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Abstract
Graphical Models are used to represent structural information on a high-dimensional joint
probability distribution. Their expressiveness offers simple reductions from a large number
of NP-hard problems to inference tasks such as computing the partition function (exact
inference) or approximating the log-partition function (approximate inference). In this
master thesis, we will motivate the need for constant-factor approximations of the log-
partition function and prove that a variant of the well studied tree-reweighted algorithm
[1] achieves constant factor guarantees. We will express the corresponding approximation
ratio 𝜅(𝐺) solely as a function of the graph structure 𝐺.
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Chapter 1

Introduction

Summary of background Graphical models have frequently been applied by the litera-
ture [2, 3] to solve combinatorial problems with inference-inspired algorithms. For instance
[2] proposes to use a message passing algorithm to compute the maximum weight matching
of a graph. This poses the general question of the hardness of inference in graphical models.

It was shown by [4] that the complexity of exact inference in graphical models is super-
polynomial with respect to 𝑘, where 𝑘 is the tree-width of the underlying graph 𝐺. The
notion of tree-width is a graph invariant that was introduced by [5] and which is equal to 1

if 𝐺 has no cycle and to 𝑛 if 𝐺 is the complete graph on 𝑛 vertices. Conversely, a problem
that can be reduced to computing the partition function of a graph with bounded tree-width
can be solved in polynomial time. For instance, the chromatic number of a graph with
bounded tree-width can be computed efficiently, as well as a maximum independent set [6].

Regarding approximate inference, no guarantee that would only depend on the graph
structure has been provided by the literature to assess feasibility - though variational meth-
ods have been widely and successfully deployed for graphical models [7]. Variational meth-
ods, such as Mean Field and Bethe typically relax a characterization of the log-partition
function as an infimum over the space of distributions. On another line, the tree-reweighted
approach developed in [1] uses the convexity of the log-partition function with respect to
the weight of potentials to provide an upper bound of the log-partition function that only
requires to do inference on spanning trees of𝐺. In Chapter 2, we will show how this upper-
bound can be transformed in a constant factor approximation of the log-partition function
where the approximation factor 𝜅(𝐺) only depends on the graph structure.

Organization of the thesis Chapter 1 will introduce notations, definitions and motivate
the problem assuming no prior knowledge of graphical models, Chapter 2 will consist in
an analysis of the tree-reweighted variant yielding a constant factor approximation of the
log-partiton function, Chapter 3 will briefly describe open directions for future research.
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1.1 Graphical models and the partiton function

1.1.1 Undirected graphical models

Undirected graphical models, also known as Markov random fields (MRF) allow to repre-
sent the conditional independence relations satisfied by a probability distribution on a (high
dimensional) space 𝒳 𝑛, where 𝒳 is the alphabet (assumed finite) and 𝑛 is the dimension
or number of random variables. More precisely, when a random vector x has coordinates
(x𝑖)𝑖∈[𝑛] satisfy certain conditional independence relations of the form x𝑖 ⊥⊥ x𝑗 | (x𝑢)�̸�∈{𝑖,𝑗},
it is natural to define the set of edges 𝐸 ⊂ [𝑛]× [𝑛] such that:

∀(𝑖, 𝑗) ∈ 𝐸𝑐 : x𝑖 ⊥⊥ x𝑗 | (x𝑢)�̸�∈{𝑖,𝑗}. (1.1)

where 𝐸𝑐 = ([𝑛] × [𝑛]) ∖ 𝐸 denotes the complementary set of 𝐸. This defines a graph
𝐺 = ([𝑛], 𝐸) that in turn carries information about the induced conditional independence
relations and factorization by the Hammersley Clifford theorem. Canonical example of dis-
tributions that can be represented by a graphical models are discrete time Markov Chains,
x = (x𝑡)𝑡∈[𝑛], that correspond to a line graph with 𝑛 nodes (aligned in chronological order).
For more precision and alternative definitions of graphical models, refer to [8] (lectures
notes of 6.438).

1.1.2 Pairwise graphical models

Pairwise graphical models (or pairwise Markov random fields) are a particular case of
graphical models in that their distribution factorizes as a product on the edge set 𝐸 ⊂
[𝑛]× [𝑛]. They represent distributions 𝑝 ∈ 𝒫(𝒳 𝑛) of (x𝑖)𝑖∈[𝑛] that factorize as follows:

∀𝑥 ∈ 𝒳 𝑛 : 𝑝x(𝑥) ∝
∏︁
𝑖∈[𝑛]

𝜓𝑖(𝑥𝑖)
∏︁
𝑒∈𝐸

𝜓𝑒(𝑥𝑒), (1.2)

where 𝜓𝑖 : 𝒳 → R+ and 𝜓𝑒 : 𝒳 2 → R+ are functions called node potentials and edge po-
tentials and where for 𝑒 = (𝑖, 𝑗), 𝑥𝑒 denotes the pair (𝑥𝑖, 𝑥𝑗). Note that this distribution sat-
isfies the conditional independence relations induced by the graphical model 𝐺 = (𝑉,𝐸).
Indeed, if 𝑖, 𝑗 ∈ 𝐸𝑐, 𝑝x(𝑥) can be decomposed in a product of two terms, the first of which
will depend on 𝑥𝑖 (and not on 𝑥𝑗) and the latter on 𝑥𝑗 (and not on 𝑥𝑖), which gives the
desired conditional independence property. Also note that the existence of node potentials
is superficial, as they no not add expressivity if every node of 𝐺 is connected to at least one
edge. Therefore we will often write as follows:

∀𝑥 ∈ 𝒳 𝑛 : 𝑝x(𝑥) ∝
∏︁
𝑒∈𝐸

𝜓𝑒(𝑥𝑒). (1.3)
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Although pairwise graphical models are simple to express with their edge potentials, their
power of expression remains important and comparable with general graphical models (see
3.3 in [7]).

1.1.3 The partition function 𝑍

We have defined distributions by their potentials: that is up to a multiplicative constant.
We call this multiplicative constant the partition function and denote it 𝑍. Its expression is
naturally as follows:

𝑍 =
∑︁
𝑥∈𝒳𝑛

(︃∏︁
𝑒∈𝐸

𝜓𝑒(𝑥𝑒)

)︃
(1.4)

This expression can be hard to compute because it consists of a sum of |𝒳 |𝑛 terms, there-
fore a naive computation will always take exponential time. It is actually not possible to
compute 𝑍 efficiently in general. Indeed assume 𝒳 = {0, 1, 2} and ∀𝑒 : 𝜓𝑒(𝑥𝑖, 𝑥𝑗) =

1I(𝑥𝑖 ̸= 𝑥𝑗); it appears that 𝑍 > 0 if and only if 𝐺 = (𝑉,𝐸) admits a three-coloring, and
this decision problem is famously NP-hard [9]. More precisely, 𝑍 counts the number of
such colorings and its computation therefore belongs to the (harder) class of complexity
#𝑃 [10].

Computing sums of products (partition functions) appear in many inference tasks. For in-
stance, if we wish to express the marginal distribution 𝑝x𝑖 of some variable x𝑖 in a graphical
model, we would write as follows:

∀𝑧 ∈ 𝒳 : 𝑝x𝑖(𝑧) =
1

𝑍

∑︁
𝑥∈𝒳𝑛−1

⎛⎝ ∏︁
𝑒∈𝐸∖𝑖

𝜓𝑒(𝑥𝑒)
∏︁

𝑢∈𝒩 (𝑖)

𝜓(𝑢,𝑖)(𝑥𝑢, 𝑧)

⎞⎠ (1.5)

where 𝐸∖𝑖 denote the set of edges that do not involve 𝑖 and 𝒩 (𝑖) ⊂ 𝑉 denotes the neigh-
bours of 𝑖. Note that the denominator 𝑍 is the partition function on 𝐺 and that the nu-
merator also takes the form of a partition function on the graph 𝐺 ∖ {𝑖} where 𝑖 has been
removed from 𝐺 and where the potentials of variables of x𝑢 : 𝑢 ∈ 𝒩 (𝑖) have been slightly
updated. Therefore, finding a efficient scheme for computing partition functions allows to
perform marginalization and other inference tasks (for more details, see [8]). This is why
the tractability of the partition function is often considered as the baseline for assessing the
feasibility of inference in a Markov random field [4].
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1.2 Hardness of exact inference

1.2.1 Tractable partition functions

For some families of potentials like Gaussian families (where x is a Gaussian vector), the
partition function is always tractable. As we saw above, this guarantees the efficiency of
other inference tasks like computing the distribution of a marginal x𝑖 or finding the most
likely configuration 𝑥* ∈ argmax𝑥∈𝒳𝑛 𝑝x(𝑥) (see Gaussian inference in [8]).

Another option to guarantee the tractability of the partition function is to make strong
assumption on the graph structure, typically asking for very sparse structures. If a graphical
model is defined on a tree, its partition function can be computed efficiently in 𝑂(𝑛|𝒳 |2)
with the sum-product algorithm and this whatever the choice of potentials. To describe
this algorithm, we assume that 𝐺 = (𝑉,𝐸) is a tree and select a root 𝑟 ∈ 𝑉 . Each non-
root node 𝑖 has a unique parent 𝑝(𝑖), and possibly several children in set 𝒞(𝑖). Notice that
because 𝐺 is assumed to be a tree, 𝐸 = {(𝑖, 𝑝(𝑖)) | 𝑖 ∈ 𝑉 ∖ {𝑟}} and |𝐸| = 𝑛 − 1.
The sum-product algorithm defines |𝐸| messages denoted 𝑚𝑖→𝑝(𝑖) that are functions of 𝒳
(𝑚𝑖→𝑝(𝑖) : 𝒳 → R+) and that are defined by recursion from the leaves to the root:

∀𝑖 ̸= 𝑟 : 𝑚𝑖→𝑝(𝑖)(𝑧) =
∑︁
𝑦∈𝒳

⎛⎝𝜓(𝑖,𝑝(𝑖))(𝑦, 𝑧)
∏︁

𝑢∈𝒞(𝑖)

𝑚𝑢→𝑖(𝑦)

⎞⎠ (1.6)

and we have:
𝑍 =

∏︁
𝑢∈𝒞(𝑟)

𝑚𝑢→𝑟(𝑥𝑟). (1.7)

Note that the runtime of this algorithm is in 𝑂(𝑛|𝒳 |2) because each of message takes |𝒳 |2
time to compute and there are |𝐸| = 𝑛 − 1 messages. The validity of this algorithm and
(1.7) can be shown by induction.

1.2.2 Tree-width and complexity of exact inference

The sum-product algorithm is generalizable to partial-k-trees in what is known as the elim-
ination algorithm that we will now describe. In the algorithm above, we have recursively
eliminated the leaves of the tree until the messages reached the root and their product would
be equal to the partition function. Observe that the difficulty of a generalization lies in the
fact that, when a node has several neighbours, their elimination will result in affecting the
potentials between these neighbours. Therefore, one should attempt to minimize the num-
ber of neighbour each node has when it is being eliminated (while this number could be
kept equal to 1 for trees).

10



More precisely, the elimination of a node 𝑖 ∈ 𝑉 from a graph 𝐺 = (𝑉,𝐸) will result in a
graph 𝐺′ = (𝑉 ′, 𝐸 ′) where 𝑉 ′ = 𝑉 ∖ {𝑖} and 𝐸 ′ = 𝐸∖{𝑖} ∪ {(𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝒩 (𝑖)}. Note
that eliminating a node of degree 𝑑 may result in adding up to 𝑑(𝑑 − 1)/2 edges because
its neighbours must form a clique in 𝐸 ′. We define an elimination order 𝜎 ∈ 𝑆𝑛 which is a
permutation on the nodes, and consider the elimination sequence of graphs 𝐺0, 𝐺1, ..., 𝐺𝑛

where 𝐺0 = 𝐺 and 𝐺𝑖+1 is the graph where 𝜎(𝑖) has been eliminated from 𝐺𝑖. A partial-
𝑘-tree is a graph such that there exists an elimination order that never eliminates a node of
degree more than 𝑘. As an example, regular trees are partial-1-trees, and the correspond-
ing elimination orders starts by eliminating the leaves. The tree-width 𝑘 of a graph is the
smallest integer such that this graph is a partial-𝑘-tree.

Once an elimination order has been identified for a graph of treewidth 𝑘, a direct general-
isation of the sum-product algorithm will allow a 𝑂(𝑛|𝒳 |𝑘) computation of the partition
function. Other equivalent views exists on this algorithm, one of which consists in con-
structing a junction tree, that is a tree-based graphical model on alphabet |𝒳 |𝑘 and that has
the same partition function 𝑍 (see [7] for more details).

The idea that the tree-width 𝑘 is a structural criteria that assesses the general complexity of
exact inference on a graph 𝐺 was consolidated by [4] who proved that the computational
complexity of inference is at least super-polynomial in the treewidth if 𝑃 ̸= 𝑁𝑃 . This
result relies on a combinatorial hypothesis due to [11] that allows to encode a MAX-2-SAT
problem on 𝑔 variables (𝑁𝑃 hard in 𝑔) in any graph of treewidth greater than poly(𝑔). This
hypothesis was recently proven in [12].

1.3 Hardness of approximate inference

Since exact inference is not feasible for a lot of canonical graphical models (see [7] on
general Boltzmann machines). Another option is to turn to approximate inference where
the objective is to approximate quantities, like the partition function 𝑍. This will require
additional assumptions; in what follows, edge potentials are assumed to be positive. Con-
sequently, one can write a pairwise graphical model in its exponential form:

∀𝑥 ∈ 𝒳 𝑛 : 𝑝x(𝑥) ∝
∏︁
𝑒∈𝐸

𝜓𝑒(𝑥𝑒) = exp

(︃∑︁
𝑒∈𝐸

𝜑𝑒(𝑥𝑒)

)︃
. (1.8)

where 𝜑𝑒 = log(𝜓𝑒) denote the log-potentials. This positivity assumption will be useful
for approximate methods that we will now present. To understand why there is little hope
to achieve significant approximations of the log-partition function without this assumption,
observe again that if we choose 𝒳 = {1, 2, 3} and 𝜓𝑒=(𝑢,𝑣)(𝑥𝑒) = 1I(𝑥𝑢 ̸= 𝑥𝑣) (which
is not always positive) then 𝑍 > 0 if and only if 𝐺 is 3-colorable. Since 3-colorability

11



is an NP-hard problem, any multiplicative approximation guarantee on 𝑍 or log(𝑍) is not
achievable in polynomial time.

In what follows, we will make the stronger assumption that log-potentials 𝜑𝑒 are positive
or equivalently that potentials 𝜓𝑒 satisfy ∀𝑥 ∈ 𝒳 𝑛,∀𝑒 ∈ 𝐸 : 𝜓𝑒(𝑥𝑒) ≥ 1. Under this
assumption, we will attempt to approximate log(𝑍) ≥ 0 up to a constant factor 𝛼 ≥ 1, i.e.
to produce l̂og(𝑍) such that:

1

𝛼
log(𝑍) ≤ l̂og(𝑍) ≤ 𝛼 log(𝑍). (1.9)

1.3.1 Relation to constraint satisfaction problems

Although we restricted our task only to achieving a constant factor approximation of log(𝑍)
(therefore an exponential approximation of 𝑍), this is likely to remain hard for most general
graphs for any 𝛼 > 1. To explain why this is the case, we recall the Unique Games
Conjecture from [13].

Definition 1.3.1 (Unique Game, [13]). A unique game 𝒰 = (𝐺,𝒳 , {𝜋𝑒 | 𝑒 ∈ 𝐸}) is a
constraint satisfaction problem defined as follows: 𝐺 = (𝑉,𝐸) is a graph whose vertices
represent variables and edges represent constraints. The goal is to assign to each vertex
𝑖 ∈ 𝑉 a label 𝑥𝑖 ∈ 𝒳 where 𝒳 is a finite set of labels. An edge 𝑒 = (𝑖, 𝑗) is satisfied by
the labelling if (𝑥𝑖, 𝑥𝑗) ∈ 𝜋𝑒 where 𝜋𝑒 denotes a permutation/matching on the labels. Let
OPT(𝒰) denote the maximum fraction of constraints that can be satisfied by any labeling:

OPT(𝒰) = max
𝑥∈𝒳𝑛

1

|𝐸|
|{𝑒 = (𝑖, 𝑗) ∈ 𝐸 | (𝑥𝑖, 𝑥𝑗) ∈ 𝜋𝑒}| (1.10)

Note that the definition from [13] uses directed graph but can easily be reduced to the
definition above by dedoubling all the vertices. Also note that MAXCUT is a Unique Game
with 𝒳 = {0, 1} and ∀𝑒 ∈ 𝐸 : 𝜋𝑒 = {(0, 1), (1, 0)}.

Definition 1.3.2 (Unique Games Conjecture, [13]). For any 𝛿 > 0, there is a constant
𝑐 ∈ N that only depends on 𝛿, such that given a unique game 𝒰 = (𝐺, [𝑐], {𝜋𝑒 | 𝑒 ∈ 𝐸}) it
is NP-hard to distinguish from these two cases:

• YES Case: OPT(𝒰) ≥ 1− 𝛿

• NO Case: OPT(𝒰) ≤ 𝛿

Observe that any algorithm producing a (1 − 𝛿)/𝛿-approximation of OPT(𝒰), would im-
mediately solve the decision problem above. This yields the following observation:

Theorem 1.3.1. If the Unique Games Conjecture holds, the task of approximating the log-
partition function of a pairwise Markov random field with non-negative log-potentials up
to any constant factor 𝛼 > 1 cannot be solved by a generic algorithm in polynomial time.
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To confirm this statement, observe that there is a simple reduction from maximum con-
straint satisfaction to approximations of the log-partition function. Given a unique game
𝒰 = (𝐺, [𝑐], {𝜋𝑒 | 𝑒 ∈ 𝐸}), consider the graphical model on 𝐺 with alphabet 𝒳 = [𝑐]

and potentials ∀𝑒 = (𝑢, 𝑣) : 𝜑𝑒(𝑥𝑒) = exp (𝛽1I((𝑥𝑢, 𝑥𝑣) ∈ 𝜋𝑒)) > 1 for some 𝛽 > 0. The
partition function then writes as follows:

𝑍(𝛽) =
∑︁
𝑥∈[𝑐]𝑛

⎛⎝ ∏︁
𝑒=(𝑢,𝑣)∈𝐸

exp (𝛽1I((𝑥𝑢, 𝑥𝑣) ∈ 𝜋𝑒))

⎞⎠ , (1.11)

=
∑︁
𝑥∈[𝑐]𝑛

exp(𝛽𝑞(𝒰 ,𝑥)), (1.12)

=
∑︁

𝑞∈[|𝐸|]

𝑁(𝒰 , 𝑞) exp(𝛽𝑞), (1.13)

where 𝑞(𝒰 ,𝑥) ∈ N denotes the number of constraints satisfied by 𝑥, an instance of 𝒰 ,
and 𝑁(𝒰 , 𝑞) denotes the number of instances 𝑥 ∈ [𝑐]𝑛 satisfying exactly 𝑞 constraints of
𝒰 . Notice that as 𝛽 → ∞, 𝑍(𝛽) behaves as its dominant term exp(𝛽𝑞𝒰) where 𝑞𝒰 =

|𝐸|OPT(𝒰). More precisely, for all 𝛽 :

exp(𝛽𝑞𝒰) ≤ 𝑍(𝛽) ≤ 𝑐𝑛 exp(𝛽𝑞𝒰), (1.14)

𝛽𝑞𝒰 ≤ log(𝑍(𝛽)) ≤ 𝑛 log(𝑐) + 𝛽𝑞𝒰 . (1.15)

By choosing, 𝛽𝜖 = 1
𝜖
𝑛 log(𝑐), we get that 1

𝛽𝜖|𝐸| log(𝑍(𝛽𝜖)) is an 𝜖-approximation for OPT(𝒰).

(1− 𝜖)
1

𝛽𝜖|𝐸|
log(𝑍(𝛽𝜖)) ≤ OPT(𝒰) ≤ 1

𝛽𝜖|𝐸|
log(𝑍(𝛽𝜖)). (1.16)

Therefore any generic polynomial time algorithm yielding a constant factor approxima-
tion the log-partition function log(𝑍(𝛽𝜖)) would result in contradicting the unique games
conjecture for some 𝛿 > 0.

1.3.2 Approximate inference by variational methods

Variational methods typically translate the inference task (such as computing 𝑍), to an
optimization task that is then approximately solved. As an example we recall the variational
characterization of log(𝑍) from [8, 14]:

log(𝑍) = sup
𝑞∈𝒫(𝒳𝑁 )

[︃
𝐻(𝑞)− Ex∼𝑞

(︃∑︁
𝑒∈𝐸

𝜓𝑒(x𝑒)

)︃]︃
(1.17)

where 𝐻(𝑞) is the entropy of the distribution 𝑞 (maximal for the uniform distribution)
and Ex∼𝑞

(︀∑︀
𝑒∈𝐸 𝜓𝑒(x𝑒)

)︀
represents the expected log-potential if x is sampled following
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distribution 𝑞. The supremum of this expression is attained for 𝑝, the latent probability
distribution defined as in (1.3) which is optimal for this entropy / energy tradeoff.

This expression can easily be proven by observing that inf𝑞∈𝒫(𝒳𝑁 )𝐾𝐿(𝑞 || 𝑝) = 0, where
equality is attained if and only if 𝑞 = 𝑝. The following derivations are all equal to zero and
prove the formula above.

inf
𝑞∈𝒫(𝒳𝑁 )

𝐾𝐿(𝑞 || 𝑝) (1.18)

inf
𝑞∈𝒫(𝒳𝑁 )

∫︁
𝒳𝑁

𝑞(𝑥) log

(︂
𝑞(𝑥)

𝑝(𝑥)

)︂
where 𝑝(𝑥) =

1

𝑍
exp

(︃∑︁
𝑒∈𝐸

𝜓𝑒(𝑥𝑒)

)︃
(1.19)

inf
𝑞∈𝒫(𝒳𝑁 )

[︃
−𝐻(𝑞) + Ex∼𝑞

(︃∑︁
𝑒∈𝐸

𝜓𝑒(x𝑒)

)︃
+ log(𝑍)

]︃
(1.20)

where 𝐻(𝑞) = Ex∼𝑞

(︁
log
(︁

1
𝑞(x)

)︁)︁
. This variational characterization of 𝑍 opens the way to

approximate solutions such as that given by mean field (restricting the optimization to the
space of distributions with independent coordinates).

The technique described above typically provide lower bounds on the partition function by
restricting the space of optimization. Another variational method was deployed in [1] to
obtain upper bounds on the log-partition function. It consists of parametrizing the partition
function with edge weights 𝜃 = (𝜃𝑒)𝑒∈𝐸 ∈ R𝐸 as follows:

𝑍(𝜃) =
∑︁
𝑥∈𝒳𝑛

exp

(︃∑︁
𝑒∈𝐸

𝜃𝑒𝜓𝑒(𝑥𝑒)

)︃
. (1.21)

Note that the partition function 𝑍 that we considered from the begining corresponds to the
edge weights 𝜃 = 1 = (1, ..., 1).

𝑍 = 𝑍(1) (1.22)

The observation that Φ : 𝜃 → log(𝑍(𝜃)) is convex then allows to write log(𝑍) as an
infimum over weighted combinations of partition functions.

log(𝑍) = inf
(𝜌𝑡):

∑︀
𝑡 𝜌

𝑡=1

(𝜃𝑡):
∑︀

𝑡 𝜌
𝑡𝜃𝑡=1

∑︁
𝑡

𝜌𝑡 log(𝑍(𝜃𝑡)) (1.23)

Though this equation may appear trivial because equality is attained for 𝜌1 = 1 and 𝜃1 = 𝜃,
its interest is that the right hand side that is combination of log(𝑍(𝜃𝑡)) may happen to be
tractable if 𝜃𝑡 ∈ R𝐸 are very sparse. More formally, if the support of 𝜃𝑡 ∈ R𝐸 , defined
as 𝐻 𝑡 = {𝑒 ∈ 𝐸 | 𝜃𝑡

𝑒 ̸= 0} ⊂ 𝐸 forms a tree, then log(𝑍(𝜃𝑡)) is tractable with the sum-
product algorithm, yielding a tractable upper bound on the partition function.
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We conclude this section by proving that the function 𝜃 → log(𝑍(𝜃)) is convex in 𝜃

because its Hessian 𝐻(𝜃) =
(︁

𝜕 log(𝑍(𝜃))
𝜕𝜃𝑒1𝜕𝜃𝑒2

)︁
𝑒1,𝑒2∈𝐸

is positive semidefinite. Let 𝑒1, 𝑒2 ∈ 𝐸 be

two edges. We can write as follows:

𝜕 log(𝑍(𝜃))

𝜕𝜃𝑒1
=

∑︀
𝑥∈𝒳𝑛 𝜓𝑒1(𝑥𝑒1) exp

(︀∑︀
𝑒∈𝐸 𝜃𝑒𝜓𝑒(𝑥𝑒)

)︀
𝑍(𝜃)

=
∑︁
𝑥∈𝒳𝑛

𝑝𝜃(𝑥)𝜓𝑒1(𝑥𝑒1), (1.24)

= Ex∼𝑝𝜃(𝜓𝑒1(x𝑒1)). (1.25)

where 𝑝𝜃 denotes the distribution associated to the re-weighted potentials (𝜃𝑒𝜓𝑒)𝑒∈𝐸 and
the partition function 𝑍(𝜃). This gives,

𝜕 log(𝑍(𝜃))

𝜕𝜃𝑒1𝜕𝜃𝑒2
=

∑︀
𝑥∈𝒳𝑛 𝜓𝑒1(𝑥𝑒1)𝜓𝑒2(𝑥𝑒2) exp

(︀∑︀
𝑒∈𝐸 𝜃𝑒𝜓𝑒(𝑥𝑒)

)︀
𝑍(𝜃)

(1.26)

−
(︀∑︀

𝑥∈𝒳𝑛 𝜓𝑒1(𝑥𝑒1) exp
(︀∑︀

𝑒∈𝐸 𝜃𝑒𝜓𝑒(𝑥𝑒)
)︀)︀ (︀∑︀

𝑥∈𝒳𝑛 𝜓𝑒2(𝑥𝑒2) exp
(︀∑︀

𝑒∈𝐸 𝜃𝑒𝜓𝑒(𝑥𝑒)
)︀)︀

𝑍(𝜃)2

(1.27)

= Ex∼𝑝𝜃(𝜓𝑒1(x𝑒1)𝜓𝑒2(x𝑒2))− Ex∼𝑝𝜃(𝜓𝑒1(x𝑒1))Ex∼𝑝𝜃(𝜓𝑒2(x𝑒2)) (1.28)

= Covx∼𝑝𝜃(𝜓𝑒1(𝑥𝑒1), 𝜓𝑒2(𝑥𝑒2)). (1.29)

Therefore we can conclude that 𝐻(𝜃) = Covx∼𝑝𝜃(𝜓(x)) is the covariance matrix of the
random vector (𝜓𝑒(x𝑒))𝑒∈𝐸 and is therefore positive semidefinite.

1.3.3 Bounding a sum of products

In the previous section, we described typical variational methods used to obtain lower and
upper bounds on the partition function. Before using those to obtain an approximation of
the log-partition function, we notice here that our derivations are not specific to the notion
of partition function and would actually hold for any sum of products in a general form.
Let 𝒲 be a class of weights on 𝐸 all greater or equal than one, ∀𝑤 ∈ 𝒲 ,∀𝑒 ∈ 𝐸 : 𝑤𝑒 ≥ 1.
We wish to estimate the sum of the product of the weights

∑︀
𝑤∈𝒲

∏︀
𝑒∈𝐸 𝑤𝑒. For any

distribution on subsets of 𝐸, i.e. 𝜌 = (𝜌𝐻)𝐻⊂𝐸 s.t. 𝜌𝐻 ≥ 0 and
∑︀

𝐻⊂𝐸 𝜌𝐻 = 1, we have
that:

∑︁
𝐻⊂𝐸

𝜌𝐻 log

(︃∑︁
𝑤∈𝒲

∏︁
𝑒∈𝐻

𝑤𝑒

)︃
≤ log

(︃∑︁
𝑤∈𝒲

∏︁
𝑒∈𝐸

𝑤𝑒

)︃
≤
∑︁
𝐻⊂𝐸

𝜌𝐻 log

(︃∑︁
𝑤∈𝒲

∏︁
𝑒∈𝐻

𝑤
1
𝜌𝑒
𝑒

)︃
(1.30)

where 𝜌𝑒 =
∑︀

𝐻∋𝑒 𝜌𝐻 denotes the probability that 𝑒 ∈ 𝐸 appears in a 𝐻 ⊂ 𝐸 sampled
from 𝜌,

𝜌𝑒 = P𝐻∼𝜌(𝑒 ∈ 𝐻). (1.31)
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This gives an upper and lower bound on the quantity on interest, that only depends on the
distribution 𝜌. Note that if the distribution is concentrated on 𝐸 (i.e. 𝜌𝐸 = 1) the upper
and lower bounds are tight whereas if the distribution is uniform on the singletons (i.e.
∀𝑒 : 𝜌{𝑒} = 1

|𝐸| ), then the upper and lower bounds can differ from a 1
|𝐸| multiplicative

factor. Importantly, we can prove that the upper an lower bound always differ by at most
by the following multiplicative constant:

𝜅𝜌 = min
𝑒∈𝐸

𝜌𝑒 (1.32)

We will now give some brief explanations on these bounds that relate them to the previous
section. The lower bound is straightforward: all the terms of the weighted sum are below
the quantity of interest. The upper bound can be obtained by convexity just like in the
previous section (observe that (𝜌𝑒)𝑒∈𝐸 =

∑︀
𝐻⊂𝐺 1I(𝑒 ∈ 𝐻)𝜌𝐻). Finally, the fact that

the upper an lower bound only differ by a multiplicative constant 𝜅(𝜌) comes from the
following inequality: for any s = (𝑠𝑖) ∈ R𝑛

+ and 𝜆 ≥ 1,

𝑛∑︁
𝑖=1

𝑠𝜆𝑖 ≤
(︀ 𝑛∑︁

𝑖=1

𝑠𝑖
)︀𝜆
.

1.3.4 Balanced covering of a graph with its trees

The interest in the bound presented above is that it directly applies to bounding the log-
partition function.

∑︁
𝐻⊂𝐺

𝜌𝐻 log

(︃∑︁
𝑥∈𝒳𝑛

∏︁
𝑒∈𝐻

𝜓𝑒(𝑥𝑒)

)︃
≤ log

(︃∑︁
𝑥∈𝒳𝑛

∏︁
𝑒∈𝐸

𝜓𝑒(𝑥𝑒)

)︃
≤
∑︁
𝐻⊂𝐺

𝜌𝐻 log

(︃∑︁
𝑥∈𝒳𝑛

∏︁
𝑒∈𝐻

𝜓𝑒(𝑥𝑒)
1
𝜌𝑒

)︃
(1.33)

Note that the upper and lower bounds can themselves be seen as averages of log-partition
functions on edge-induced subgraphs 𝐻 ⊂ 𝐸. If 𝜌 has support on graph structures for
which inference is tractable - like trees or any graph with bounded tree-width - these bounds
turn out to be tractable. Recall from the previous section that the quality of the approxima-
tion depends on how well 𝜌 spans all edges through the quantity 𝜅𝜌. This advocates for the
following question: how to cover a graph 𝐺 with its low tree-width subgraphs? Formally,
the question translates in finding 𝜌 such that

𝜌 ∈ argmax
𝜌∈𝒯𝑘(𝐺)

min
𝑒∈𝐸

𝜌𝑒 (1.34)

where 𝒯𝑘(𝐺) denotes the edge-induced sub-graphs of𝐺 of tree-width less than 𝑘. Once this
covering is known (and assuming 𝜌 has polynomial support), we achieve an approximation
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by the following multiplicative constant:

𝜅𝑘(𝐺) = max
𝜌∈𝒯𝑘(𝐺)

min
𝑒∈𝐸

𝜌𝑒 (1.35)

Chapter 2 will provide a full study of 𝜅1(𝐺), therefore solving the problem of obtaining a
balanced covering of a graph from its spanning trees. In particular we will prove that the
corresponding distribution 𝜌*

1 is tractable and that

𝜅1(𝐺) = min
𝑆⊂𝑉

|𝑆| − 1

|𝐸(𝑆)|
(1.36)

where 𝐸(𝑆) denotes the subset of edges of 𝐺 with both endpoints in 𝑆. In Figure 1-1
we give some visual examples of attainable balanced coverings for small graphs that were
designed by hand. In Figure 1-2, more examples are given but their decomposition is not
explicited.

Figure 1-1: Three examples of balanced coverings of graphs. Notice that for the triangle,
the most connected subgraph is the entire graph itself which yields 𝜅1(𝐺) = 3−1

3
= 2

3
=

0.67 just like for the third example for which 𝜅1(𝐺) = 4−1
5

= 3
5
= 0.6.
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Figure 1-2: More examples of balanced covering of graphs, obtained with a LP solver.
Note that for some graphs like 𝐺7, some of the edge probability for the (3, 5) edge could
be redistributed to the (4, 5) edge for symmetry but this would not improve the optimum.
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Chapter 2

Analysis of the tree-reweighted method

This chapter is an extraction from Romain Cosson, and Devavrat Shah. "Approximating
the Log-Partition Function." arXiv preprint arXiv:2102.10196 (2021), published in [15].

Abstract
Variational approximation, such as mean-field (MF) and tree-reweighted (TRW), provide a
computationally efficient approximation of the log-partition function for a generic graph-
ical model. TRW provably provides an upper bound, but the approximation ratio is gen-
erally not quantified. As the primary contribution of this work, we provide an approach
to quantify the approximation ratio through the property of the underlying graph structure.
Specifically, we argue that (a variant of) TRW produces an estimate that is within factor

1√
𝜅(𝐺)

of the true log-partition function for any discrete pairwise graphical model over

graph 𝐺, where 𝜅(𝐺) ∈ (0, 1] captures how far 𝐺 is from tree structure with 𝜅(𝐺) = 1 for
trees and 2/𝑁 for the complete graph over 𝑁 vertices. As a consequence, the approxima-
tion ratio is 1 for trees,

√︀
(𝑑+ 1)/2 for any graph with maximum average degree 𝑑, and

𝛽→∞
≈ 1 + 1/(2𝛽) for graphs with girth (shortest cycle) at least 𝛽 log𝑁 . In general, 𝜅(𝐺) is

the solution of a max-min problem associated with 𝐺 that can be evaluated in polynomial
time for any graph. Using samples from the uniform distribution over the spanning trees
of G, we provide a near linear-time variant that achieves an approximation ratio equal to
the inverse of square-root of minimal (across edges) effective resistance of the graph. We
connect our results to the graph partition-based approximation method and thus provide a
unified perspective.
Keywords: variational inference, log-partition function, spanning tree polytope, minimum
effective resistance, min-max spanning tree, local inference

2.1 Introduction

The Setup. We consider a collection of𝑁 discrete valued random variables, X = (𝑋1, . . . , 𝑋𝑁),
whose joint distribution is modeled as a pair-wise graphical model. Let 𝐺 = (𝑉,𝐸) rep-
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resent the associated graph with vertices 𝑉 = {1, . . . , 𝑁} representing 𝑁 variables and
𝐸 ⊂ 𝑉 × 𝑉 representing edges. Let each variable take value in a discrete set 𝒳 ⊂ R+.
For 𝑒 ∈ 𝐸, let 𝜑𝑒 : 𝒳 × 𝒳 → R+ denote the edge potential and let 𝜃𝑒 ∈ R+ denote the
associated parameter. This leads to joint distribution with probability mass function

P(X = x;𝜃) ∝ exp
(︁∑︁

𝑒∈𝐸

𝜃𝑒𝜑𝑒(𝑥𝑒)
)︁

=
1

𝑍(𝜃)
exp

(︁∑︁
𝑒∈𝐸

𝜃𝑒𝜑𝑒(𝑥𝑒)
)︁

(2.1)

where x = (𝑥1, . . . , 𝑥𝑁) ∈ 𝒳𝑁 , 𝑥𝑒 is short hand for (𝑥𝑠, 𝑥𝑡) if 𝑒 = (𝑠, 𝑡) ∈ 𝐸, 𝜃 = (𝜃𝑒 :

𝑒 ∈ 𝐸) ∈ R|𝐸|
+ and normalizing constant or partition function 𝑍(𝜃) is defined as

𝑍(𝜃) =
∑︁
x∈𝒳𝑁

exp
(︁∑︁

𝑒∈𝐸

𝜃𝑒𝜑𝑒(𝑥𝑒)
)︁
. (2.2)

Such pairwise graphical models provide succinct description for complicated joint distribu-
tions. However, the key challenge in utilizing them (e.g. for inference) arises in estimating
the partition function 𝑍(𝜃). In this work, our interest is in computing logarithm of 𝑍(𝜃),
precisely

Φ(𝜃) = log𝑍(𝜃) = log

[︃ ∑︁
x∈𝒳𝑁

exp
(︁∑︁

𝑒∈𝐸

𝜃𝑒𝜑𝑒(𝑥𝑒)
)︁]︃
. (2.3)

Computing 𝑍(𝜃) is known to be computationally hard in general, i.e. #P-complete due to
relation to counting discrete objects such as independent sets cf. [16, 17]. Due to reductions
from discrete optimization problems to log-partition function computation, approximating
Φ(𝜃), even up to a multiplicative error, can be NP-hard cf. [18, 19, 20]. Therefore, the goal
is to develop polynomial time (in 𝑁 ) approximation method for computing Φ(𝜃) or 𝑍(𝜃)
with provable guarantees on the approximation error. Specifically, let ALG denote such
an approximation method that takes problem description (𝐺, (𝜑𝑒)𝑒∈𝐸,𝒳 ) as input and pro-
duces estimate ̂︀ΦALG(𝜃) for Φ(𝜃) for any given 𝜃 ∈ R|𝐸|

+ . Then, we define approximation
ratio associated with ALG as 𝛼(𝐺,ALG) ≥ 1 as

𝛼(𝐺,ALG) = sup
𝜃∈R+

max
(︁ Φ(𝜃)̂︀ΦALG(𝜃)

,
̂︀ΦALG(𝜃)

Φ(𝜃)

)︁
. (2.4)

Prior Work. There is a long literature on developing computationally efficient approxi-
mation method for log-partition function with significant progress in the past two decades.
We recall few relevant prior works here.
A collection of methods, classified as variational approximations, utilize the (Gibbs) vari-
ational characterization of the log-partition function when distribution (2.1) is viewed as
a member of an exponential family, cf. [21, 19]. Specifically, Φ(𝜃) can be viewed as a
solution of a high-dimensional constrained maximization problem. By solving the prob-
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lem with additional constraints, one obtains a valid lower bound such as that given by
Mean-Field methods. By utilizing the convexity of Φ(·) and restricting it to tree-structured
sub-graphs of 𝐺, one obtains a valid upper bound such as that given by the tree-reweighted
(TRW) method. By relaxing the constraints and adapting the objective to allow for pair-
wise pseudo-marginals, one obtains heuristics such as Belief Propagation (BP) via Bethe
approximation [22, 23]. While BP does not provide provable upper or lower bound in gen-
eral, for graphs with large-girth such as sparse random graphs and distributions with spatial
decay of correlation, it provides an excellent approximation cf. [24]. The spatial decay
of correlation property has been further exploited to obtain deterministic Fully Polynomial
Time Approximation Schemes (FPTAS) for various counting problems, i.e. computing
partition functions cf. [18, 25, 26, 27]. The approximation error of belief propagation for
computing log-partition function has been studied through connection to loop calculus as
well cf. [28, 29].
In another line of works, graph partitioning based methods have been proposed to provide
Polynomial Time Approximation Schemes (PTAS) for a class of graphs that satisfy certain
graph partitioning properties which includes minor-excluded graphs [30] or graphs with
polynomial growth [31].
In summary, despite the progress, the approximation ratio 𝛼(𝐺,ALG) for any of the known
variational approximation methods ALG remains undetermined.

Summary of Contributions. As the main contribution, for a simple variant of tree-
reweighted (TRW) method, denoted as TRW′, we quantify 𝛼(𝐺,TRW′) for any 𝐺. The
TRW′ is described in Section 2.3 and produces an estimate of Φ(·) in polynomial time.
Specifically, we establish

Theorem 2.1.1. For any graph 𝐺, the approximation ratio of TRW′ is such that

𝛼(𝐺, TRW′) ≤ 1/
√︀
𝜅(𝐺) where 𝜅(𝐺) = min

𝑆⊂𝑉

|𝑆| − 1

|𝐸(𝑆)|
, (2.5)

with 𝐸(𝑆) = 𝐸 ∩ (𝑆 × 𝑆) for any 𝑆 ⊂ 𝑉 .

The term 𝜅(𝐺) captures the proximity of 𝐺 with respect to the tree structure across all of
its induced sub-graphs: for 𝑆 ⊂ 𝑉 , the induced subgraph (𝑆,𝐸(𝑆)) would have at most
|𝑆|−1 if it were cycle free, but it has |𝐸(𝑆)| edges. Therefore, the ratio of (|𝑆|−1)/|𝐸(𝑆)|
measures how far it is from tree – 1 if connected tree and 2/|𝑆| if complete graph. The
minimum over all possible 𝑆 ⊂ 𝑉 of this ratio captures how far 𝐺 is from a tree structure.

Using this characterization, we provide bounds on 𝛼(𝐺,TRW′) in terms of various simpler
graph properties in Section 2.4.4. Specifically, we show that for any graph with maximum
average vertex degree 𝑑 ≥ 1, 𝛼(𝐺,TRW′) ≤

√︀
(𝑑+ 1)/2. And for graphs with girth

(i.e. length of shortest cycle) 𝑔 > 3, 𝛼(𝐺,TRW′) ≤
√︁

1+𝑁2/(𝑔−3)

2(1−1/𝑔)
: for 𝑔 ≥ 𝛽 log𝑁 , it

is
(︀
1 + 1

2𝛽
+ 𝑜( 1

𝛽
)
)︀

for large 𝛽. This means that for any 𝐺 with large (≫ log𝑁 ) girth,
𝛼(𝐺,TRW′) ≈ 1.
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In general, we establish that 𝜅(𝐺) can be evaluated in polynomial time for any graph 𝐺
by solving an appropriate linear program on the (polynomially-)extended spanning tree
polytope. This is explained in Section 2.4.

The tree-reweighted variant TRW′ considered here requires solving a certain optimization
problem over the tree polytope of the graph 𝐺. Though it can be computed in polynomial
time, it can be quite involved. With an eye towards near linear-time (in |𝐸|) computation,
a variant that instead of optimizing over the tree polytope simply considers a feasible point
in the tree polytope that corresponds to the uniform distribution over spanning trees of 𝐺.
Using the near-linear time sampling of spanning tree from [32], we provide a randomized
approximation method. It’s approximation ratio 𝛼(𝐺) is bounded above by 1/

√
min𝑒∈𝐸 𝑟𝑒

where 𝑟𝑒 ≥ 0 is the effective resistance of 𝑒 ∈ 𝐸 for the graph 𝐺 = (𝑉,𝐸) (see (2.39) for
precise definition). While in general, this provides a weaker approximation guarantee than
that of TRW’, for graphs with vertex degree bounded by 𝑑 it leads to a similar guarantee of
𝛼(𝐺) ≤

√︀
(𝑑+ 1)/2.

We show that the results based on graph partitioning cf. [30, 31] can be recovered as a
natural extension of the variant of TRW introduced in this work by allowing for general
graphs with bounded tree-width beyond trees.

We take note of the fact that though results discussed in this work are primarily for the
variant of TRW described in Section 2.3, as an immediate consequence of our results,
𝛼(𝐺,TRW) ≤ 1/𝜅(𝐺), i.e. it is bounded by the square of that derived in Theorem 2.1.1.
As discussed in Section 2.7, understanding the tightness of this characterization especially
for TRW remains an important open direction.

Outline of Paper. In Section 2.2, we provide some preliminaries including recalling the
tree-reweighted (TRW) method. In Section 2.3, we provide a modification of TRW and
characterize its approximation guarantee. In Section 2.4, we provide a linear optimization
characterization of the approximation guarantee which leads to the proof of Theorem 2.1.1.
We discuss implications of Theorem 2.1.1 for various classes of graphs as well. In Section
2.5, we present a near linear-time variant of modified TRW based on sampling from the
uniform distribution of spanning tree over 𝐺. We derive approximation guarantees for the
resulting method in terms of the effective resistance of the graph and derive its implications.
In Section 2.6, we discuss connection with graph partitioning methods by extending the
modified TRW of Section 2.3 to allow for bounded tree-width subgraphs beyond trees. We
argue how results of [30, 31] follow naturally. Section 2.7 discusses directions for future
work.
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2.2 Preliminaries and Background

2.2.1 Variational Characterization, Mean-Field Approximation and
Belief Propagation

We start by recalling the variational characterization of the log-partition function Φ(·).
Let 𝒫(𝒳𝑁) denote the space of all probability distributions over 𝒳𝑁 . Then, the Gibbs
variational characterization states that

Φ(𝜃) = sup
𝑞∈𝒫(𝒳𝑁 )

Ex∼𝑞(
∑︁
𝑒

𝜃𝑒𝜑𝑒(x𝑒)) +𝐻(𝑞), (2.6)

where 𝐻(𝑞) = −Ex∼𝑞(log(𝑞(x))) is the entropy of 𝑞. While computationally (2.6) does not
provide tractable solution for evaluating Φ(·), it provides a framework to develop approx-
imation methods – such methods, inspired by this characterization, are called variational
approximations.
As mentioned earlier, the classical mean-field consists in relaxing 𝒫(𝒳𝑁) to the space of
independent distributions over 𝒳𝑁 denoted as ℐ(𝒳𝑁), i.e. ℐ(𝒳𝑁) = {𝑞 ∈ 𝒫(𝒳𝑁) :

𝑞(𝑋1, . . . , 𝑋𝑁) =
∏︀𝑁

𝑖=1(𝑋𝑖)}. By restricting optimization in (2.6) to ℐ(𝒳𝑁), the resulting
answer is a lower bound on Φ(𝜃). And mean-field method precisely attempts to solve such
a lower-bound.
It turns out that (2.6) is solvable efficiently for tree-structured graph. Specifically, if 𝐺 is a
connected tree, i.e. 𝐺 is connected with |𝐸| = 𝑁 − 1, then any distribution satisfying (2.1)
can be re-parametrized as

P(x;𝜃) =
∏︁
𝑢∈𝑉

P𝑋𝑢(𝑥𝑢)
∏︁

(𝑢,𝑣)∈𝐸

P𝑋𝑢,𝑋𝑣(𝑥𝑢, 𝑥𝑣)

P𝑋𝑢(𝑥𝑢)P𝑋𝑣(𝑥𝑣)
. (2.7)

In the expression above, P𝑋𝑢(·) denotes the marginal distribution of 𝑋𝑢, 𝑢 ∈ 𝑉 and
P𝑋𝑢,𝑋𝑣(·, ·) denotes the pairwise marginal distribution of (𝑋𝑢, 𝑋𝑣) for any edge 𝑒 = (𝑢, 𝑣) ∈
𝐸. The Belief Propagation (or sum-product) algorithm can compute these marginal dis-
tributions efficiently for tree graphs using only knowledge of 𝜃 and 𝜑𝑒, 𝑒 ∈ 𝐸 but not
requiring Φ(𝜃). It utilizes 𝑂(|𝒳 |2𝑁) computation time, when implemented efficiently.
Therefore, 𝑍(𝜃) and hence Φ(𝜃) can be computed for tree graphs using 𝑂(|𝒳 |2𝑁) com-
putations.
Indeed, the re-parametrization of the form (2.7) was a basis for the Belief Propagation (BP)
algorithm for generic graphical models and also led to the so called Bethe Approximation
of (2.6), cf. [22]. However, it does not result in a provably upper or lower bound in general
(with few exceptions).
To obtain an upper bound on Φ(·), its convexity was exploited in [1] along with the fact
that (2.6) is solvable efficiently for tree-structured graph. This resulted into tree-reweighted
(TRW) algorithm which we describe next.
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2.2.2 Tree-Reweighted (TRW): An Upper Bound on Φ(·)

Recall that a spanning tree 𝑇 is a subgraph of 𝐺 that contains all vertices 𝑉 and a subset of
edges 𝐸 so that the resulting subgraph is a tree, i.e. does not have a cycle. Let 𝒯 (𝐺) be the
set of all spanning trees of 𝐺. We shall denote a distribution on 𝒯 (𝐺) as 𝜌 = (𝜌𝑇 )𝑇∈𝒯 (𝐺)

where 𝜌𝑇 ≥ 0 for all 𝑇 ∈ 𝒯 (𝐺),
∑︀

𝑇∈𝒯 (𝐺) 𝜌
𝑇 = 1. The space of all distributions on 𝒯 (𝐺)

is denoted by 𝒫(𝒯 (𝐺)). For simplicity, we shall drop notation of 𝐺 at times when it is
clear from the context and denote it simply as 𝒫(𝒯 ). A distribution 𝜌 ∈ 𝒫(𝒯 ) induces for
all edge 𝑒 ∈ 𝐸 a probability 𝜌𝑒 that this edge will appear in a tree selected from 𝜌,

𝜌𝑒 = PT∼𝜌

(︀
𝑒 ∈ T) =

∑︁
𝑇∈𝒯 (𝐺)

𝜌𝑇1(𝑒 ∈ 𝑇 ). (2.8)

Note that in the above, we have abused notation using 𝑇 as a spanning tree as well as the set
of edges constituting it. We shall continue using this notation since the all spanning trees
have the same set of vertices, 𝑉 and only the edges differ (among subsets of 𝐸). Also note
another convenient abuse of notation: given 𝜌, 𝜌𝑇 denotes probability of 𝑇 ∈ 𝒯 (𝐺) while
𝜌𝑒 is the marginal probability of edge 𝑒 ∈ 𝐸 being present in tree as per 𝜌 and satisfies∑︀

𝑒∈𝐸 𝜌𝑒 = 𝑁 − 1. Given 𝜌 ∈ 𝒫(𝒯 (𝐺)), we now define 𝜅𝜌 as

𝜅𝜌 = min
𝑒∈𝐸

𝜌𝑒. (2.9)

For any 𝜃 ∈ R|𝐸|
+ , define its support as 𝑠(𝜃) = {𝑒 ∈ 𝐸 : 𝜃𝑒 ̸= 0}. Given a spanning tree

𝑇 ∈ 𝒯 (𝐺), let 𝜃𝑇 ∈ R|𝐸|
+ be such that 𝑠(𝜃𝑇 ) ⊂ 𝑇 . Let 𝜌 ∈ 𝒫(𝒯 ) along with (𝜃𝑇 )𝑇∈𝒯 be

such that
∑︀

𝑇∈𝒯 𝜌
𝑇 𝜃𝑇 = 𝜃. That is, ET∼𝜌

[︀
𝜃T
]︀
= 𝜃. Therefore, we can write

Φ(𝜃) = Φ
(︀
ET∼𝜌

[︀
𝜃T
]︀)︀
. (2.10)

It has been well established that Φ : R|𝐸|
+ → R is a convex function. Precisely, for any

𝜃1,𝜃2 ∈ R|𝐸|
+ and 𝛾 ∈ [0, 1]

Φ(𝛾𝜃1 + (1− 𝛾)𝜃2) ≤ 𝛾Φ(𝜃1) + (1− 𝛾)Φ(𝜃2). (2.11)

From (2.10) and (2.11), it follows from Jensen’s inequality that

Φ(𝜃) ≤ ET∼𝜌

[︀
Φ(𝜃T)

]︀
=
∑︁
𝑇∈𝒯

𝜌𝑇Φ(𝜃𝑇 ). (2.12)

Since the upper bound (A.6) holds for any 𝜌 ∈ 𝒫(𝒯 ) and (𝜃𝑇 )𝑇∈𝒯 such that
∑︀

𝑇∈𝒯 𝜌
𝑇 𝜃𝑇 =
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𝜃 we can optimize on these two parameters to obtain

Φ(𝜃) ≤ inf∑︀
𝑇∈𝒯 𝜌𝑇 𝜃𝑇=𝜃

(︃∑︁
𝑇∈𝒯

𝜌𝑇Φ(𝜃𝑇 )

)︃
≡ 𝑈TRW(𝜃). (2.13)

As established in [1], this seemingly complicated optimized bound, 𝑈TRW(𝜃), can be
computed via an iterative tree-reweighted message-passing algorithm through the dual of
the above optimization problem. While this is a valid upper bound, how tight the upper
bound is for a given graphical model is not quantified in the literature. And this is precisely
the primary contribution of this work.

2.3 Algorithm and Approximation Guarantee

Modified Tree-Reweighted: TRW′. We describe a simple variant of TRW that enables us
to bound the approximation ratio of the estimation of Φ using properties of 𝐺. We start
with some useful notations. Given 𝜃 = (𝜃𝑒)𝑒∈𝐸 ∈ R|𝐸|

+ , 𝜌 ∈ 𝒫(𝒯 (𝐺)) and spanning tree
𝑇 ∈ 𝒯 (𝐺) of graph 𝐺, define “projection” operations

Π𝑇 : R|𝐸|
+ → R|𝐸|

+ where Π𝑇 (𝜃) =
(︀
1(𝑒 ∈ 𝑇 )𝜃𝑒

)︀
𝑒∈𝐸

Π𝑇
𝜌 : R|𝐸|

+ → R|𝐸|
+ where Π𝑇

𝜌 (𝜃) =
(︀ 1
𝜌𝑒
1(𝑒 ∈ 𝑇 )𝜃𝑒

)︀
𝑒∈𝐸. (2.14)

With these notations, for a given 𝜌 ∈ 𝒫(𝒯 (𝐺)) define

𝐿𝜌(𝜃) = ET∼𝜌(Φ(Π
T(𝜃))) =

∑︁
𝑇∈𝒯 (𝐺)

𝜌𝑇Φ(Π𝑇 (𝜃)), (2.15)

𝑈𝜌(𝜃) = ET∼𝜌(Φ(Π
T
𝜌(𝜃))) =

∑︁
𝑇∈𝒯 (𝐺)

𝜌𝑇Φ(Π𝑇
𝜌 (𝜃)). (2.16)

For a given 𝜌 ∈ 𝒫(𝒯 (𝐺)), one obtains an estimate of Φ(𝜃)

̂︀Φ𝜌(𝜃) =
√︁
𝐿𝜌(𝜃)𝑈𝜌(𝜃). (2.17)

For reasons that will become clear, TRW′ outputs ̂︀Φ𝜌⋆(𝜃) where 𝜌⋆ = 𝜌⋆(𝐺) defined as

𝜌⋆(𝐺) ∈ argmax
𝜌∈𝒫(𝒯 (𝐺))

(︀
min
𝑒∈𝐸

𝜌𝑒
)︀

and 𝜅𝜌⋆(𝐺) = max
𝜌∈𝒫(𝒯 (𝐺))

(︀
min
𝑒∈𝐸

𝜌𝑒
)︀
. (2.18)

Guarantee. The lemma below quantifies the approximation ratio for TRW′. It’s proof is in
Appendix A.1.

Lemma 2.3.1. Given 𝜃 ∈ R|𝐸|
+ , TRW′ produce ̂︀Φ𝜌⋆(𝜃) with 𝜌⋆ = 𝜌⋆(𝐺) as defined in
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(2.18). Then,

𝛼(𝐺, TRW′) ≤ 1
√
𝜅𝜌⋆

. (2.19)

2.4 𝜅𝜌⋆(𝐺): Efficient computation, characterization

Lemma 2.3.1 establishes the approximation guarantee for TRW′ as claimed in Theorem
2.1.1 with caveat that it is in terms of 𝜅𝜌⋆(𝐺) while Theorem 2.1.1 states it in form of 𝜅(𝐺)
as defined in (2.5). In this section, we shall establish the characterization of 𝜅𝜌⋆(𝐺) = 𝜅(𝐺)

and in the process argue that it can be evaluated in polynomial time for any graph 𝐺.
This characterization will allow us to bound 𝜅(𝐺) for certain classes of graphs to obtain
meaningful intuition.

2.4.1 Computing 𝜌⋆(𝐺) and 𝜅𝜌⋆(𝐺) efficiently

Spanning Tree Polytope. We define a notion of spanning tree polytope for a given graph 𝐺.
Recall that 𝒯 (𝐺) is the set of all spanning trees of 𝐺. For any tree 𝑇 ∈ 𝒯 (𝐺), we shall
utilize the notation of 𝜒𝑇 = [𝜒𝑇

𝑒 ] ∈ {0, 1}𝐸 to represent the characteristic vector of the tree
𝑇 defined such that

∀𝑒 ∈ 𝐸 : 𝜒𝑇
𝑒 = 1(𝑒 ∈ 𝑇 ). (2.20)

Given this notation, we define the polytope of spanning trees of 𝐺, denoted Ptree(𝐺), as the
convex hull of their characteristic vectors. That is,

Ptree(𝐺) =
{︀
v ∈ [0, 1]𝐸 : v =

∑︁
𝑇∈𝒯 (𝐺)

𝜌𝑇𝜒𝑇 ,
∑︁

𝑇∈𝒯 (𝐺)

𝜌𝑇 = 1, 𝜌𝑇 ≥ 0,∀𝑇 ∈ 𝒯 (𝐺)
}︀
.

(2.21)

The weights (𝜌𝑇 )𝑇∈𝒯 (𝐺) can be viewed as probability distribution on 𝒯 (𝐺), i.e. an element
of 𝒫(𝒯 (𝐺)). Therefore v =

∑︀
𝑇∈𝒯 (𝐺) 𝜌

𝑇𝜒𝑇 corresponds to a vector representing the
probabilities that edges in 𝐸 will be present in in T ∼ 𝜌 = (𝜌𝑇 ), i.e. v = ET∼𝜌[1(𝑒 ∈ T)].
That is, v = (𝜌𝑒)𝑒∈𝐸 as defined in (2.8). Therefore, we shall abuse notation and write

Ptree(𝐺) =
{︀
(𝜌𝑒)𝑒∈𝐸 | (𝜌𝑇 )𝑇∈𝒯 (𝐺) ∈ 𝒫(𝒯 (𝐺))

}︀
. (2.22)

[33] gave the following characterization of the spanning tree polytope:

Ptree(𝐺) =

{︃
(𝑣𝑒)𝑒∈𝐸 ∈ R𝐸

+

⃒⃒⃒⃒
⃒ ∀𝑆 ⊂ 𝐸 : 𝑣(𝐸(𝑆)) ≤ |𝑆| − 1

𝑣(𝐸) = |𝑉 | − 1

}︃
, (2.23)
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where 𝑣(𝐸(𝑆)) =
∑︀

𝑒∈𝐸(𝑆) 𝑣𝑒.

Efficient Separation Oracle. A polytope P ⊂ Rn, defined through a set of linear constraints,
is said to have a separation oracle if there exists a polynomial time algorithm in 𝑛 which for
given any 𝑥 ∈ R𝑛 can determine whether 𝑥 ∈ P or not; and output a violated constraint if
𝑥 /∈ P. Edmond’s characterization of the spanning tree polytope, though has an exponential
number of constraints, admits an efficient separation oracle. Such an efficient separation
oracle is defined explicitly via a min-cut reduction, see [34, Chapter 4.1].

Complexity of Linear Programming. Consider a linear program where the goal is to find
a minimum of a linear objective function over a polytope defined by finitely many linear
constraints. Such a linear program can be solved in polynomial time (in size of problem
description) via the Ellipsoid method if the polytope admits an efficient separation oracle,
see [35, Theorem 8.5] for example. Given that the spanning tree polytope has an efficient
separation oracle, optimizing a linear objective over it can be solved efficiently. Of course,
due to the structure of the trees, a greedy algorithm like that of Kruskal’s may be a lot more
direct for solving such a linear program. Having said that, the benefit of efficient separa-
tion oracle becomes apparent as soon as we consider additional linear constraints beyond
those described in Ptree(𝐺). Indeed, such approaches have found utility in solving other
problems, liked solving bounded-degree maximum-spanning-tree relaxations like in [36].

Augmented Spanning Tree Polytope. We consider a reformulation of the max-min problem
in (2.18). To that end consider the following augmented spanning tree polytope:

Ptree
min(𝐺) =

⎧⎪⎨⎪⎩(𝑧, (𝑣𝑒)𝑒∈𝐸) ∈ R× R|𝐸|
+

⃒⃒⃒⃒
⃒⃒⃒ ∀𝑒 ∈ 𝐸 : 𝑧 ≤ 𝑣𝑒

∀𝑆 ⊂ 𝐸 : 𝑣(𝐸(𝑆)) ≤ |𝑆| − 1

𝑣(𝐸) = |𝑉 | − 1

⎫⎪⎬⎪⎭ . (2.24)

With this notation, we can re-write 𝜅𝜌⋆(𝐺) as per (2.18) as

𝜅𝜌⋆(𝐺) = max
(𝑣𝑒)𝑒∈𝐸∈Ptree

{min
𝑒∈𝐸

𝑣𝑒} = max
(𝑧,(𝑣𝑒)𝑒∈𝐸)∈Ptree

min

𝑧. (2.25)

Next, we argue that Ptree
min admits an efficient separation oracle as follows. The separation

oracle for Ptree
min takes (𝑧, (𝑣𝑒)𝑒∈𝐸) as input. It first checks that all |𝐸| constraints of the form

𝑧 ≤ 𝑣𝑒 are satisfied. If one is not satisfied, then the oracle outputs this constraint. If all
constraints are satisfied, the algorithm runs the separation oracle of Ptree on (𝑣𝑒)𝑒∈𝐸 and re-
produces its output. Since |𝐸| ≤ 𝑁2 and Ptree has an efficient separation oracle, this leads
to polynomial time separation oracle for Ptree

min.

Efficient computation of 𝜌⋆(𝐺) and 𝜅𝜌⋆(𝐺). From the linear program formulation (2.25) and
from the efficient separation oracle as defined above, we can compute 𝜅𝜌⋆(𝐺) in polyno-
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mial time using the Ellipsoid algorithm. Note that this does not directly provides 𝜌⋆(𝐺) ∈
𝒫(𝒯 (𝐺)) since the representation in Ptree corresponds to the edge probabilities (𝜌⋆(𝐺)𝑒)𝑒∈𝐸 .
However, (𝜌⋆(𝐺)𝑒)𝑒∈𝐸 is a convex combination of extreme points of Ptree, which corre-
spond to the spanning trees of 𝐺. Since Ptree has efficient separation oracle, we can recover
a decomposition of (𝜌⋆(𝐺)𝑒)𝑒∈𝐸 in terms of convex combination of characteristic vectors
weighted by (𝜌⋆(𝐺)𝑇 )𝑇∈𝒯 (𝐺) and such that at most |𝐸| of these weights are strictly positive,
see details in [37, Theorem 3.9].

2.4.2 Characterizing 𝜅𝜌⋆(𝐺) = 𝜅(𝐺)

We wish to establish 𝜅𝜌⋆(𝐺) = 𝜅(𝐺), i.e. we want to establish

𝜅𝜌⋆(𝐺) = max
(𝑣𝑒)𝑒∈𝐸∈Ptree

{min
𝑒∈𝐸

𝑣𝑒} = min
𝑆⊂𝑉

|𝑆| − 1

|𝐸(𝑆)|
. (2.26)

Upper bound: 𝜅𝜌⋆(𝐺) ≤ |𝑆|−1
|𝐸(𝑆)| . The upper bound is immediately given by Edmond’s char-

acterisation of the spanning tree polytope. For any (𝜌𝑒)𝑒∈𝐸 ∈ Ptree and any 𝑆 ⊂ 𝑉 :

|𝐸(𝑆)|
(︀
min
𝑒∈𝐸

𝜌𝑒
)︀
≤
(︀ ∑︁
𝑒∈𝐸(𝑆)

𝜌𝑒
)︀
= 𝜌(𝐸(𝑆)) ≤ |𝑆| − 1. (2.27)

That is, for any 𝜌 ∈ 𝒫(𝒯 (𝐺))

𝜅𝜌 ≤ min
𝑆⊂𝑉

|𝑆| − 1

|𝐸(𝑆)|
. (2.28)

And hence it holds for 𝜌⋆(𝐺) as well.

Lower bound: 𝜅𝜌⋆(𝐺) ≥ |𝑆|−1
|𝐸(𝑆)| . To establish the lower bound, we need a few additional

results. To start with, we define a dual of the optimization problem (2.25) to characterize
𝜅𝜌⋆(𝐺). By strong duality it follows that

𝜅𝜌⋆(𝐺) = max
𝜌∈𝒫(𝒯 )

min
𝑒∈𝐸

∑︁
𝑇∈𝒯

1(𝑒 ∈ 𝑇 )𝜌𝑇 = min
w∈𝒫(𝐸)

max
𝑇∈𝒯

∑︁
𝑒∈𝐸

1(𝑒 ∈ 𝑇 )𝑤𝑒, (2.29)

where 𝒫(𝐸) = {w = (𝑤𝑒)𝑒∈𝐸 :
∑︀

𝑒∈𝐸 𝑤𝑒 = 1, 𝑤𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸}. Table 2.1 provides the
precise primal and dual formulation associated with 𝜅𝜌⋆(𝐺) justifying (2.29). We state the
following Lemma characterizing an optimal solution of Dual, whose proof is in Appendix
A.2.

Lemma 2.4.1. There exists an optimal solution of Dual,

w⋆ ∈ argmin
w∈𝒫(𝐸)

max
𝑇∈𝒯

∑︁
𝑒∈𝐸

1(𝑒 ∈ 𝑇 )𝑤𝑒,
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Primal Dual
Objective max 𝑧 min 𝑦

Variables / Constraints
𝑧 ∈ R

∀𝑇 ∈ 𝒯 : 𝜌𝑇 ∈ R+

∑︀
𝑒∈𝐸 𝑤𝑒 = 1

∀𝑇 ∈ 𝒯 : 𝑦 −
∑︀

𝑒∈𝑇 𝑤𝑒 ≥ 0

Constraints / Variables
∑︀

𝑇∈𝒯 𝜌𝑇 = 1
∀𝑒 ∈ 𝐸 :

∑︀
𝑇∋𝑒 𝜌𝑇 − 𝑧 ≥ 0

𝑦 ∈ R
∀𝑒 ∈ 𝐸 : 𝑤𝑒 ∈ R+

Table 2.1: The primal (cf. (2.25)) and dual formulation of 𝜅𝜌⋆(𝐺).

such that all non-zero components of w⋆ take the identical values: i.e. |{𝑤𝑒 : 𝑤𝑒 ̸= 0, 𝑒 ∈
𝐸}| = 1.

As per Lemma 2.4.1, consider an optimal solution of Dual, w⋆, that assigns constant value
to a subset 𝐹 ⊂ 𝐸 edges and 0 to edges 𝐸∖𝐹 : let w⋆ = (𝑤⋆

𝑒)𝑒∈𝐸 with 𝑤⋆
𝑒 = 1

|𝐹 | for
𝑒 ∈ 𝐹 and 𝑤⋆

𝑒 = 0 for 𝑒 ∈ 𝐸∖𝐹 . Let 𝑉 (𝐹 ) ⊂ 𝑉 be set of all vertices corresponding to
the end points of edges in 𝐹 making a subgraph (𝑉 (𝐹 ), 𝐹 ) of 𝐺. Let 𝑐(𝐹 ) ≥ 1 denote
the number of connected components of (𝑉 (𝐹 ), 𝐹 ). Per Dual, given w⋆, 𝜅𝜌⋆(𝐺) equals
the weight of the maximum weight spanning tree in 𝐺 with edges assigned weights as
per w⋆. Such a maximum weight spanning tree must select as many edges as possible
from 𝐹 : since it has 𝑐(𝐹 ) connected components and 𝑉 (𝐹 ) vertices, it can select at most
|𝑉 (𝐹 )| − 𝑐(𝐹 ) such edges and any each such edge has weight 1/|𝐹 |. The rest of the edges
in the maximum weight spanning tree will carry weight 0. Thus, the total weight of such
a maximum weight spanning tree is (|𝑉 (𝐹 )| − 𝑐(𝐹 ))/|𝐹 |. This gives us an equivalent
characterization for 𝜅𝜌⋆(𝐺) as

𝜅𝜌⋆(𝐺) = min
𝐹⊂𝐸

|𝑉 (𝐹 )| − 𝑐(𝐹 )

|𝐹 |
. (2.30)

Now we state a Lemma, whose proof is in Appendix A.3, which relates the characterization
of (2.30) with that of (2.5).

Lemma 2.4.2. For any graph 𝐺,

min
𝑆⊂𝑉

|𝑆| − 1

|𝐸(𝑆)|
= min

𝐹⊂𝐸

|𝑉 (𝐹 )| − 𝑐(𝐹 )

|𝐹 |
. (2.31)

2.4.3 Proof of Theorem 2.1.1

The primary claim of Theorem 2.1.1 is that 𝛼(𝐺,TRW′) ≤ 1/
√︀
𝜅(𝐺). As per Lemma

2.3.1, we have that 𝛼(𝐺,TRW′) ≤ 1/
√
𝜅𝜌⋆(𝐺). As per arguments in Section 2.4.2, we have

that 𝜅𝜌⋆(𝐺) = 𝜅(𝐺). Therefore, we conclude the proof of Theorem 2.1.1.
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2.4.4 Evaluating 𝜅(𝐺) For a Class of Graphs

As established in Section 2.4.1, 𝜅(𝐺) or 𝜅𝜌⋆(𝐺) can be computed in polynomial time for any
𝐺. Here, we attempt to obtain a (lower) bound on 𝜅(𝐺) in terms of simple graph properties.
To that end, we obtain the following for graphs with bounded maximum average degree.

Lemma 2.4.3. For a graph 𝐺 = (𝑉,𝐸), let 𝑑 = max𝑆⊂𝑉
2|𝐸(𝑆)|

|𝑆| denote the maximum
average degree. Then

𝜅(𝐺) ≥ 2

𝑑+ 1
. (2.32)

For graphs with large girth, we obtain the following.

Lemma 2.4.4. For a graph 𝐺 = (𝑉,𝐸), let 𝑔 > 3 be its girth, i.e. the length of the shortest
cycle. Then

𝜅(𝐺) ≥ 2

1 +𝑁
2

𝑔−3

(1− 1

𝑔
). (2.33)

The proofs of Lemmas 2.4.3 and 2.4.4 are presented in Appendix A.4. As per Lemma
2.4.4, for 𝑔 = 𝛽 log𝑁 for 𝛽 ≫ 1 and 𝑁 large enough

𝜅(𝐺) ≥ 2

1 +𝑁
2

𝑔−3

(1− 1

𝑔
). (2.34)

Therefore,

𝛼(𝐺,TRW′) ≤ 1√︀
𝜅(𝐺)

≈ 1 +
1

2𝛽
. (2.35)

2.5 A Near Linear-Time Variant of TRW

2.5.1 Algorithm

The TRW′ requires finding 𝜌⋆(𝐺). As discussed in Section 2.4, it can be computed effi-
ciently. However it can be cumbersome and having near-linear (in |𝐸|) time variant can be
more attractive in practice. With this as a motivation, we propose utilizing uniform distri-
bution on 𝒯 (𝐺), denoted as u ≡ u(𝒯 (𝐺)), in place of 𝜌⋆(𝐺) in TRW′ . The challenge is it
has very large support, 𝒯 (𝐺), and hence it is difficult to compute 𝐿u(𝜃), 𝑈u(𝜃). But, both
of these quantities are averages, with respect to u, of a certain functional. And it is feasible
to sample spanning tree uniformly at random for any 𝐺 in near-linear time. Therefore, we
can draw 𝑛 samples from the distribution u and consider the empirical distribution û𝑛 to
compute estimates 𝐿û𝑛(𝜃), 𝑈û𝑛(𝜃) with few samples. This is precisely the algorithm.
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To that end, consider 𝑛 trees T1, . . . ,T𝑛 sampled uniformly at random from 𝒯 (𝐺). Com-
pute

�̂�𝑛𝑒 =
1

𝑛

𝑛∑︁
𝑖=1

1(𝑒 ∈ T𝑖), ∀ 𝑒 ∈ 𝐸, 𝐿û𝑛(𝜃) =
1

𝑛

𝑛∑︁
𝑖=1

Φ(ΠT𝑖(𝜃)), 𝑈û𝑛(𝜃) =
1

𝑛

𝑛∑︁
𝑖=1

Φ(ΠT𝑖

û𝑛(𝜃)),

(2.36)

where û𝑛 = (�̂�𝑛𝑒 )𝑒∈𝐸 . Given this, produce the estimate

̂︀Φû𝑛(𝜃) =
√︀
𝐿û𝑛(𝜃)𝑈û𝑛(𝜃). (2.37)

2.5.2 Guarantees

Given a graph 𝐺, remember that 𝜅u(𝐺) = min𝑒∈𝐸 𝑢𝑒 with u being the uniform distribution
on 𝒯 (𝐺) and 𝑢𝑒 = ET∼u[1(𝑒 ∈ T)]. We state the following Lemma, whose proof can be
found in Appendix A.5.

Lemma 2.5.1. Given 𝜖 > 0 and 𝑑 > 0, for 𝑛 ≥ 𝑂
(︀
log(𝑁

𝛿
)𝜅u(𝐺)

−2𝜖−2
)︀

and 𝜖 sufficiently
small, with probability at least 1− 𝛿

max
𝜃∈R𝐸

(︁ Φ(𝜃)̂︀Φû𝑛(𝜃)
,
̂︀Φû𝑛(𝜃)

Φ(𝜃)

)︁
≤ 1 + 𝜖√︀

𝜅u(𝐺)
. (2.38)

2.5.3 Computation Cost

To sample tree uniformly at random from 𝒯 (𝐺), [32] recently proposed a method that
has 𝑂(|𝐸|1+𝑜(1)) runtime using short-cutting method and insights from effective resistance.
The earliest polynomial time algorithm has been known since [38]. While we do not recall
either of these here, we briefly recall algorithm from [39] due to its elegance even though
it is not the optimal (it has 𝑂(𝑁 |𝐸|) run time): (1) starting with any 𝑢 ∈ 𝑉 run a random
walk on 𝐺 until it covers all vertices, (2) for every vertex 𝑣 ̸= 𝑢, select the edge through
which 𝑣 was reached for the first time during the walk, and (3) output the 𝑁 − 1 edges
(which form tree) thus selected.

Given 𝑛 such samples, to compute ̂︀Φû𝑛(𝜃), we have to compute 2𝑛 log-partition func-
tions for tree structured graph. As noted in Section 2.2, each such computation requires
𝑂(𝑁 |𝒳 |2) operations.

By Lemma 2.5.1, we need 𝑛 ≥ 𝑂 ((𝑑+ log(𝑁))𝜅u(𝐺)
−2𝜖−2) to achieve (1 + 𝜖)/

√︀
𝜅u(𝐺)

approximation with probability 1 − 𝑒−𝑑. That is, in total we need total of 𝑂(|𝐸|1+𝑜(1) +

𝑁 |𝒳 |2) × 𝑂(𝜅u(𝐺)
−2𝜖−2 log 1/𝜖) computation for (1 + 𝜖)/

√︀
𝜅u(𝐺) approximation with

probability 1− 𝜖.
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2.5.4 𝜅u(𝐺) and Effective Resistance

The 𝜅u(𝐺) = min𝑒∈𝐸 𝑢𝑒 where 𝑢𝑒 = ET∼u[1(𝑒 ∈ T)] turns out to be related to the so
called “effective resistance” associated with edge 𝑒 ∈ 𝐸 for the graph 𝐺. The notion
was introduced by [40] and has multiple interpretations. We present one such here. For
𝑒 = (𝑠, 𝑡) ∈ 𝐸, the effective resistance 𝑢𝑒 is equal to the amount of electric energy dis-
sipated by the network when all edges are seen as electric wire of resistance 𝑅𝑒 = 1

and a generator guarantees a total current flow (𝜄gen = 1) from 𝑠 to 𝑡. The distribution
of the current 𝜄 across the network must minimize the dissipated energy while respecting
the constraints imposed by Kirchoff’s laws (also see [41, Chapter 2]). Below we provide
variational characterization of it.

∀𝑒 = (𝑠, 𝑡) ∈ 𝐸 : 𝑢𝑒 = min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∑︁

{𝑢,𝑣}∈𝐸

𝜄(𝑢, 𝑣)2

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

∀{𝑢, 𝑣} ∈ 𝐸 : 𝜄(𝑢, 𝑣) + 𝜄(𝑣, 𝑢) = 0

∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡} :
∑︁

𝑣|(𝑢,𝑣)∈𝐸

𝜄(𝑢, 𝑣) = 0

∑︁
𝑣|(𝑠,𝑣)∈𝐸

𝜄(𝑠, 𝑣) =
∑︁

𝑢|(𝑢,𝑡)∈𝐸

𝜄(𝑢, 𝑡) = 1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

(2.39)

Lemma 2.5.2. Given 𝐺 = (𝑉,𝐸): (a) if 𝑑 be the maximum vertex degree, then for any
𝑒 ∈ 𝐸, 𝑢𝑒 ≥ 2

𝑑+1
; (b) if the girth is at least 𝑔 > 3, then for any 𝑒 ∈ 𝐸, 𝑢𝑒 ≥ 1

1+
|𝐸|

(𝑔−1)2

.

The proof can be found in Appendix A.6.

2.6 Beyond Trees

This far, we have restricted to approximating Φ(𝜃) by decomposing 𝜃 = ET∼𝜌[Π
𝑇
𝜌 (𝜃)] and

then using convexity, monotonicity and sub-linearity to produce an approximation guar-
antee. Such arguments would hold even if we can decompose 𝜃 using subgraphs of 𝐺
beyond trees. The choice of trees was particularly useful since they allow for an efficient
computation of Φ. In general, graphs with bounded tree-width lend themselves to efficient
computation of Φ, cf. [29].

To that end, let 𝒯𝑘(𝐺) denote the set of all subgraphs of 𝐺 that have treewidth bounded by
𝑘 ≥ 1. Let 𝒫(𝒯𝑘(𝐺)) denote the distribution over all such subgraphs. For any 𝐻 ∈ 𝒯𝑘(𝐺)

and 𝜌 ∈ 𝒫(𝒯𝑘(𝐺)), define Π𝐻(·) and Π𝐻
𝜌 (·) similar to that in (2.14) in Section 2.3 in the

definition of TRW′,

𝐿𝜌(𝜃) = EH∼𝜌(Φ(Π
H(𝜃))), 𝑈𝜌(𝜃) = EH∼𝜌(Φ(Π

H
𝜌(𝜃))), and ̂︀Φ𝜌(𝜃) =

√︁
𝐿𝜌(𝜃)𝑈𝜌(𝜃).

(2.40)

Using identical arguments as in Theorem 2.1.1, it follows that ̂︀Φ𝜌(𝜃) is 1√
𝜅𝑘
𝜌

-approximation
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where

𝜅𝑘𝜌 = max
𝜌∈𝒫(𝒯𝑘(𝐺))

min
𝑒∈𝐸

𝜌𝑒. (2.41)

(𝜖, 𝑘)-partitioning. While such generality is pleasing its utility is in improved approxima-
tion. Indeed, in [30, 31] a seemingly different approach was proposed using graph parti-
tioning. At its core, it was shown that for a large family of graphs including minor-excluded
graphs and graphs with polynomial growth, there exists 𝜌 ∈ 𝒫(𝒯𝑘(𝐺)) which satisfies cer-
tain (𝜖, 𝑘)-partitioning property (for appropriately chosen 𝜖, 𝑘). Consider 𝑘-partitions of 𝐺
defined as

Part𝑘(𝐺) = {𝐻 = (𝑉,
𝐾⋃︁
𝑖=1

𝐸(𝑆𝑖)) | (𝑆𝑖)1≤𝑖≤𝑘 is a partition of 𝑉 and ∀𝑖 : |𝑆𝑖| ≤ 𝑘}.

(2.42)
Note that Part𝑘(𝐺) ⊂ 𝒯𝑘(𝐺). A distribution 𝜌 ∈ 𝒫(Part𝑘(𝐺)) ⊂ 𝒫(𝒯𝑘(𝐺)) is called an
(𝜖, 𝑘)-partitioning of 𝐺 if

∀𝑒 ∈ 𝐸 : 1− 𝜖 ≤ EH∼𝜌[1(𝑒 ∈ H)] ≤ 1. (2.43)

We state the following result whose proof can be found in Appendix A.5.

Theorem 2.6.1. Let 𝐺 be such that there exists 𝜌 ∈ 𝒫(Part𝑘(𝐺)) ⊂ 𝒫(𝒯𝑘(𝐺)) that is
(𝜖, 𝑘) partition of 𝐺. Then, for any 𝜃 ∈ R|𝐸|

+

√
1− 𝜖 ≤ Φ(𝜃)̂︀Φ𝜌(𝜃)

≤ 1√
1− 𝜖

. (2.44)

We note that 1√
1−𝜖

= 1+ 1
2
𝜖+𝑜(𝜖) and hence it improves upon the result given in [30, 31]

which achieves a 1 + 𝜖 approximation error.

2.7 Conclusions

We presented a method to quantify the approximation ratio of variational approximation
method for est mating the log-partition function of discrete pairwise graphical models. As
the main contribution, we quantified the approximation error as a function of the underlying
graph properties. In particular, for a variant of the tree-reweighted algorithm, for graphs
with bounded degree the approximation ratio is a constant factor (function of degree) and
graphs with large (≫ logarithmic) girth, the approximation ratio is close to 1. The method
naturally extends beyond trees unifying prior works on graph partitioning based approach.

In this work, we restricted the analysis to non-negative valued potentials and edge pa-
rameters. If potentials are bounded, we can transform the general setting into a setting with
non-negative potentials. However, the approximation ratio with respect to this transformed
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setting may not translate to that of the original setting. This may be interesting direction
for future works.

Acknowledgements

This work is supported in parts by projects from NSF and KACST as well as by a Hewlett
Packard graduate fellowship. We would like to thank Moïse Blanchard for useful discus-
sions on duality.

34



Chapter 3

Conclusion and open questions

3.1 Log-potentials taking negative values

In our analysis, we have focused on the case where log-potentials 𝜓𝑒 take positive values.
While we argued in Section 1.3 that approximating the corresponding partition function 𝑍
was as hard as unique games, a lot of natural approximation problems cannot be expressed
naturally with positive potentials.

For instance, maximum independent set, which aims at finding 𝑥 ∈ {0, 1}𝑉 maximizing∑︀
𝑖∈𝑉 𝑥𝑖 under the constraints ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸 : (𝑥𝑖, 𝑥𝑗) ̸= (1, 1) naturally corresponds to

the following log-potentials:

𝜓𝑖(𝑥𝑖) = 𝛽1I(𝑥𝑖 = 1) (3.1)

𝜓(𝑖,𝑗)(𝑥𝑖, 𝑥𝑗), = −𝛽1I((𝑥𝑖, 𝑥𝑗) ̸= (1, 1)). (3.2)

Any constant factor approximation on 𝑍(𝛽) would then yield a constant factor approxima-
tion on the size of the maximum independent set. In particular a 𝜅(𝐺) ≥ 2

𝑑+1
approximation

factor where 𝑑 is the maximum average degree would be significant in the light of known
hardness results [42].

One of the reasons why there is little hope of achieving similar approximation ratio when
allowing for potentials with negative values is the feasibility of 𝑍 = 1 (i.e, log(𝑍) = 0)
which reduces any constant factor approximation to an exact computation. Instead, an op-
tion could be to allow for log-potentials taking values in R+ ∪ {−∞} but again, it is easy
to see that testing whether 𝑍 = 0 (i.e, log(𝑍) = −∞) would immediately allow to decide
whether a constraint satisfaction problem on 𝐺 (like 3-colorability) admits a solution.

This leads us to consider the case when log-potentials can only take bounded negative
values (i.e. such that 𝜑𝑒 ≥ −𝑚). One can then consider the re-scaled potentials 𝜑′

𝑒 =
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𝜑𝑒 +𝑚 ≥ 0 and approximate the corresponding log-partition function Φ′ = log (𝑍 ′) with
TRW′. This yields the following where for clarity, we drop the 𝜃, and we denote 𝜅(𝐺) = 𝜅:

log(𝑍 ′) = log

(︃∑︁
𝑥∈𝒳𝑁

Π𝑒∈𝐸 exp(𝜑𝑒(𝑥𝑒) +𝑚)

)︃
= log(𝑍) +𝑚|𝐸| (3.3)

Φ′ = Φ+𝑚|𝐸|. (3.4)

The approximation ̂︀Φ′ obtained by TRW is provably a 1√
𝜅

-approximation of Φ′ = log(𝑍 ′).

It is then natural to define ̂︀Φ = ̂︀Φ′−𝑚|𝐸|. The guarantee we obtain on ̂︀Φ writes as follows:√
𝜅Φ+(

√
𝜅−1)𝑚|𝐸| ≤ ̂︀Φ ≤ 1√

𝜅
Φ+( 1√

𝜅
−1)𝑚|𝐸| and is obviously not a constant-factor

guarantee. Obtaining a constant factor approximation in any setup where there are negative
weights would be a significant improvement.

3.2 Relation to graph sparsification

Note that the approximation factor 𝜅(𝐺) reflects the local sparsity of the graph 𝐺.

𝜅1(𝐺) = min
𝑆⊂𝑉

|𝑆| − 1

|𝐸(𝑆)|
(3.5)

For a graphical model (𝐺, (𝜑𝑒)𝑒∈𝐸) with partition function 𝑍𝐺,𝜑 if there exists some sparser
graphical model (�̃�, (𝜑𝑒)𝑒∈𝐸) such that 𝑍�̃�,𝜑 ≈ 𝑍𝐺,𝜑, then one can obtain a better approxi-
mation guarantee by approximating the sparse problem.

This is specifically the case for MAXCUT for which linear sized spectral sparsifiers [43, 44]
produce a (1 + 𝜖) sparsifier of 𝐺 with 𝑂( 𝑛

𝜖2
) edges. Unfortunately, this does not allow to

beat the trivial factor 1/2 approximation factor for MAXCUT but similar techniques could
perhaps be deployed successfully for other problems.

3.3 Generalization to graphs with bounded tree-width

As we presented in Section 1.3.4, the general question we raised is how to cover a graph
𝐺 with its low tree-width subgraphs? which translates in finding 𝜌 such that

𝜌 ∈ argmax
𝜌∈𝒯𝑘(𝐺)

min
𝑒∈𝐸

𝜌𝑒 (3.6)

where 𝒯𝑘(𝐺) denotes the edge-induced sub-graphs of𝐺 of tree-width less than 𝑘. Once this
covering is known (and assuming 𝜌 has polynomial support), we achieve an approximation
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by the following multiplicative constant:

𝜅𝑘(𝐺) = max
𝜌∈𝒯𝑘(𝐺)

min
𝑒∈𝐸

𝜌𝑒 (3.7)

Obtaining a closed form for 𝜅𝑘(𝐺) for 𝑘 ≥ 1 is beyond the scope of this thesis and would
immediately result in a better approximation factor for the log-partition function. This
problem is likely to be much harder since the maximum weight partial 𝑘-subtree problem
is known to be NP-hard [45, 46] when the correctness of Kruskal’s algorithm was a key
ingredient in our proof.

3.4 A practical algorithm to find 𝜌

In Chapter 2 we defined two dual linear programming problems with solution 𝜅(𝐺). We
showed that these two problems could be solved in polynomial time by the ellipsoid method,
and gave a closed form for the objective. However we observed that these problems are hard
to solve efficiently in practice. In our simulations (Primal in Figure 1-2 and Dual in Fig-
ure A-1) we had to restrict the graph to have less than 10 nodes for computational purposes
by lack of an existing efficient solver on the spanning tree polytope in Python (though it
exists in theory). We wonder whether an effective and natural algorithm can be designed to
solve either of these problems. We believe that this problem could be closely related to the
computation of the graph density 𝑓(𝐺) [47, 48] that is equal to :

𝑓(𝐺) = max
𝑆⊂𝑉

|𝐸(𝑆)|
|𝑆|

, (3.8)

and for which there are various efficient algorithmic formulations. We transcribe here the
elegant LP formulation given by [48] stating that 𝑓(𝐺) is also the result of the following
linear programming problem:

max

(︃∑︁
𝑖𝑗

𝑥𝑖𝑗

)︃
(3.9)

s.t. ∀𝑖𝑗 ∈ 𝐸 : 𝑥𝑖𝑗 ≤ 𝑦𝑖 (3.10)

∀𝑖𝑗 ∈ 𝐸 : 𝑥𝑖𝑗 ≤ 𝑦𝑗 (3.11)∑︁
𝑖

𝑦𝑖 ≤ 1 (3.12)

𝑥𝑖𝑗, 𝑦𝑖 ≥ 0 (3.13)

Note that contrarily to Primal or Dual this problem only has a polynomial number of
variables and a polynomial number of constraints and can therefore be solved much more
efficiently in practice (without the need for an oracle). This suggests an efficient LP for-
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mulation of:
1

𝜅(𝐺)
= max

𝑆⊂𝑉

|𝐸(𝑆)|
|𝑆| − 1

. (3.14)

Consider the following linear problem indexed by 𝑖0 ∈ 𝑉 :

max

(︃∑︁
𝑖𝑗

𝑥𝑖𝑗

)︃
(3.15)

s.t. ∀𝑖𝑗 ∈ 𝐸 : 𝑥𝑖𝑗 ≤ 𝑦𝑖 (3.16)

∀𝑖𝑗 ∈ 𝐸 : 𝑥𝑖𝑗 ≤ 𝑦𝑗 (3.17)

𝑦𝑖0 = 1 (3.18)∑︁
𝑖 ̸=𝑖0

𝑦𝑖 ≤ 1 (3.19)

𝑥𝑖𝑗, 𝑦𝑖 ≥ 0 (3.20)

By the same reasoning as that deployed in [48], this problem has solution:

max
𝑆⊂𝑉 ∖{𝑖0}

|𝐸(𝑆 ∪ {𝑖0})|
|𝑆|

. (3.21)

By change of variable 𝑆 ′ = 𝑆 ∪{𝑖0} and taking the max over all possible 𝑖0 ∈ 𝑉 (we solve
each of the 𝑛 associated linear problems), we obtain

1

𝜅(𝐺)
= max

𝑆′⊂𝑉

|𝐸(𝑆 ′)|
|𝑆 ′| − 1

. (3.22)

This shows that 𝜅(𝐺) can be expressed efficiently by a linear program with polynomial
number of constraints and variables. There remains to derive an efficient algorithm for
computing 𝜌* ∈ argmax𝜌∈𝒯1(𝐺)min𝑒∈𝐸 𝜌𝑒 which also appears to be an interesting open
problem.
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Appendix A

Proofs and illustrations

A.1 Proof of Lemma 2.3.1

Proof. We start by observing a few properties of function Φ(·).
Property 1. Φ is non-decreasing. For 𝑎, 𝑏 ∈ R𝑛 let 𝑎 ⪯ 𝑏 denote that every component of
𝑎 is less or equal to that of 𝑏, i.e. 𝑎𝑖 ≤ 𝑏𝑖, 𝑖 ∈ [𝑛]. With this, for 𝜃,𝜃′ ∈ R|𝐸|

+ such that
𝜃 ⪯ 𝜃′, it can be easily verified that

Φ(𝜃) ≤ Φ(𝜃′). (monotonicity)

Since Φ(0) = 𝑁 log |𝒳 |, and 0 ⪯ 𝜃 ⪯ 𝜃′, we have

𝑁 log(|𝒳 |) ≤ Φ(𝜃) ≤ Φ(𝜃′). (A.1)

Property 2. Φ is sub-linear. For 𝜆 ≥ 1 and 𝜃 ∈ R|𝐸|
+ ,

Φ(𝜆𝜃) ≤ 𝜆Φ(𝜃). (sub-linearity)

The above follows from the fact that for any s = (𝑠𝑖) ∈ R𝑛
+,

(︀ 𝑛∑︁
𝑖=1

𝑠𝜆𝑖
)︀
≤
(︀ 𝑛∑︁

𝑖=1

𝑠𝑖
)︀𝜆
.

Now consider any 𝜌 ∈ 𝒫(𝒯 (𝐺)). For any 𝑇 ∈ 𝒯 (𝐺) and 𝜃 ∈ R|𝐸|
+ , by definition of Π𝑇 ,

we have that Π𝑇 (𝜃) ⪯ 𝜃. Therefore, using the monotonicity of the log-partition function it
follows that

𝐿𝜌(𝜃) =
∑︁

𝑇∈𝒯 (𝐺)

𝜌𝑇Φ(Π𝑇 (𝜃)) ≤
∑︁

𝑇∈𝒯 (𝐺)

𝜌𝑇Φ(𝜃) ≤ Φ(𝜃). (A.2)
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By definition 𝜃 = ET∼𝜌[Π
T
𝜌(𝜃)], and due to convexity of Φ (cf. (2.11)), it follows that

Φ(𝜃) = Φ
(︀
ET∼𝜌[Π

T
𝜌(𝜃)]

)︀
≤ ET∼𝜌[Φ(Π

T
𝜌(𝜃))] = 𝑈𝜌(𝜃). (A.3)

By definition of 𝜅𝜌 = min𝑒∈𝐸 𝜌𝑒, it follows that

Π𝑇
𝜌 (𝜃) ≤

1

𝜅𝜌
Π𝑇 (𝜃), ∀ 𝑇 ∈ 𝒯 (𝐺). (A.4)

And, by definition 𝜅𝜌 ≥ 1. Therefore by (monotonicity) and (sub-linearity), we have

Φ(Π𝑇
𝜌 (𝜃)) ≤ Φ

(︀ 1

𝜅𝜌
Π𝑇 (𝜃)

)︀
≤ 1

𝜅𝜌
Φ(Π𝑇 (𝜃)). (A.5)

Therefore,

𝑈𝜌(𝜃) =
∑︁

𝑇∈𝒯 (𝐺)

𝜌𝑇Φ(Π𝑇
𝜌 (𝜃)) ≤ 1

𝜅𝜌

(︀ ∑︁
𝑇∈𝒯 (𝐺)

𝜌𝑇Φ(Π𝑇 (𝜃))
)︀
=

1

𝜅𝜌
𝐿𝜌(𝜃). (A.6)

As a consequence of (A.2), (A.3) and (A.6) we obtain that

Φ(𝜃) ≤ 𝑈𝜌(𝜃) ≤
1

𝜅𝜌
Φ(𝜃) and 𝜅𝜌Φ(𝜃) ≤ 𝐿𝜌(𝜃) ≤ Φ(𝜃). (A.7)

From this, it follows that

√
𝜅𝜌Φ(𝜃) ≤

√︁
𝐿𝜌(𝜃)𝑈𝜌(𝜃) ≤

1
√
𝜅𝜌

Φ(𝜃). (A.8)

Which can be rewritten as

√
𝜅𝜌 ≤

̂︀Φ𝜌(𝜃)

Φ(𝜃)
≤ 1

√
𝜅𝜌
. (A.9)

By optimizing over choice of 𝜌 = 𝜌⋆, we conclude that 𝛼(𝐺,TRW′) ≤ 1
𝜅𝜌⋆

.

A.2 Proof of Lemma 2.4.1

Proof. (See illustration in Figure A-1) For w = (𝑤𝑒)𝑒∈𝐸 denote 𝑓(w) the number of dis-
tinct values in its support:

𝑓(w) = |{𝑤𝑒 : 𝑒 ∈ 𝐸,𝑤𝑒 ̸= 0}|. (A.10)

To prove the lemma, it suffices to show that there exists an optimal solution of Dual such
that 𝑓(w) = 1. We will prove that if w is an optimal solution and 𝑓(w) > 1 then we
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can build w′ of similar objective value such that 𝑓(w′) ≤ 𝑓(w)− 1. By repeating this till
𝑓(w) = 1 will conclude the proof.

Let w be an optimal solution with 𝑓(w) > 1. We consider the edges 𝑒1, 𝑒2, ..., 𝑒|𝐸| ordered
by their weights, i.e.

𝑤𝑒1 ≥ ... ≥ 𝑤𝑒|𝐸| . (A.11)

In what follows, we will make sure that the ordering on the edges never changes, therefore
we allow ourselves to write 𝑤𝑖 instead of 𝑤𝑒𝑖 . Now the objective of Dual achieved by such
an optimal w corresponds to the weight of a maximum weight spanning tree. Let us utilize
Kruskal’s algorithm to find such an maximum weight spanning tree. Recall that Kruskal’s
algorithm greedily selects edges from higher to lower weight as long as they do not create
a cycle with previously selected edges. We will denote 𝐼𝑇 = {𝑡1 < ... < 𝑡𝑁−1} the indices
of the edges selected by the algorithm to construct tree 𝑇 and let 𝐼𝐸∖𝑇 = ∪𝑁−1

𝑘=1 {𝑠 : 𝑡𝑘 <

𝑠 < 𝑡𝑘+1} denote the indices of edges not part of 𝑇 with notation 𝑡𝑁 = |𝐸| + 1. The
weight of the maximum spanning tree is then w(𝑇 ) =

∑︀𝑁−1
𝑘=1 𝑤𝑡𝑘 . Note that 𝑡1 = 1 and

𝑡2 = 2 since cycle requires 3 or more edges. By definition 𝑤𝑗−1 ≥ 𝑤𝑗 for 2 ≤ 𝑗 ≤ |𝐸|.
Now if 𝑤𝑗−1 > 𝑤𝑗 the we claim that 𝑗 ∈ 𝐼𝑇 . This is because for 1 ≤ 𝑘 ≤ 𝑁 − 1

if (𝑤𝑡𝑘 , ...., 𝑤𝑡𝑘+1−1) are not equal, setting them all to their average decreases 𝑤𝑡𝑘 strictly
while preserving w ∈ 𝒫(𝐸) as well as the order on the edges and therefore contradicting
the optimality of w for Dual. Therefore w is piece-wise constant with discontinuities only
appearing for 𝑗 ∈ 𝐼𝑇 .

If 𝑓(w) = 2 and all weights are positive, we denote 2 ≤ 𝑘 ≤ 𝑁 − 1 such that 𝑤𝑡𝑘−1 >

𝑤𝑡𝑘 > 0 and we have:

𝑤1 = ... = 𝑤𝑡𝑘−1 > 𝑤𝑡𝑘 = .... = 𝑤|𝐸|. (A.12)

In this case, the optimal objective value for Dual is equal to (𝑘 − 1)𝑤1 + (𝑁 − 𝑘)𝑤𝑡𝑘 .
To make w constant on its support while preserving the order on the weights, there are
two possibilities. Either transfer all weight from (𝑤𝑡𝑘 , ...., 𝑤|𝐸|) to (𝑤1, ..., 𝑤𝑡𝑘−1) until
(𝑤𝑡𝑘 , ...., 𝑤|𝐸|) reaches zero. The objective will then be 𝑤1 +

|𝐸|−𝑡𝑘+1
𝑡𝑘−1

𝑤𝑡𝑘 . Or transfer all
weight from (𝑤1, ..., 𝑤𝑡𝑘−1) to (𝑤𝑡𝑘 , ...., 𝑤|𝐸|) until all weights are equal. The objective will
be then 𝑤𝑡𝑘 + |𝐸|−𝑡𝑘+1

𝑡𝑘−1
(𝑤1 − 𝑤𝑡𝑘). Because either |𝐸|−𝑡𝑘+1

𝑡𝑘−1
≤ 1 or 𝑡𝑘−1

|𝐸|−𝑡𝑘+1
≤ 1, one of

these transfers does not increase the objective and yields 𝑓(w) = 1 < 2.

If 𝑓(w) = 2 and some weights are 0, denote 𝑘0 the smallest index such that 𝑤𝑡𝑘0
= 0.

The method above still holds when replacing |𝐸| − 𝑡𝑘 + 1 by 𝑡𝑘0 − 𝑡𝑘.

Now suppose 𝑓(w) ≥ 3, making sure that the order on the weights is preserved re-
quires extra caution. In addition to 𝑘 and 𝑘0 (if required), we denote 𝑘1 the index of the
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discontinuity that follows 𝑘. We have:

... = 𝑤𝑡𝑘1−1 > 𝑤𝑡𝑘1
= ... = 𝑤𝑡𝑘−1 > 𝑤𝑡𝑘 = ... = 𝑤𝑡𝑘0−1 > 𝑤𝑡𝑘0

= ... (A.13)

In the event when we want to transfer weight from (𝑤𝑡𝑘 , ..., 𝑤𝑡𝑘0−1) to (𝑤𝑡𝑘1
, ..., 𝑤𝑡𝑘−1), we

must make sure that (𝑤𝑡𝑘1
, ..., 𝑤𝑡𝑘−1) does not exceed 𝑤𝑡𝑘1−1. If (𝑤𝑡𝑘1

, ..., 𝑤𝑡𝑘−1) attains
𝑤𝑡𝑘1−1 the transfer must stop at equality, and one should observe that we have decreased
𝑓(w) strictly by 1 because the discontinuity at 𝑤𝑡𝑘1

has disappeared and no new disconti-
nuity was created.

In summary, we have argued that if w is an optimal solution and 𝑓(w) > 1 then we
can build w′ of same objective value (optimal) and such that 𝑓(w′) ≤ 𝑓(w) − 1. This
completes the proof of Lemma.

A.3 Proof of Lemma 2.4.2

Proof. We prove the equality by establishing inequalities in both direction.

Establishing min𝑆⊂𝑉
|𝑆|−1
|𝐸(𝑆)| ≥ min𝐹⊂𝐸

|𝑉 (𝐹 )|−𝑐(𝐹 )
|𝐹 | : For 𝑆 ⊂ 𝑉 note that 𝑉 (𝐸(𝑆)) ⊂ 𝑆

and 𝑐(𝐸(𝑆)) ≥ 1 and therefore that |𝑆|−1
|𝐸(𝑆)| ≥ |𝑉 (𝐸(𝑆))|−𝑐(𝐸(𝑆))

|𝐸(𝑆)| with 𝐸(𝑆) ⊂ 𝐸. Thus,

min𝑆⊂𝑉
|𝑆|−1
|𝐸(𝑆)| is minimizing a larger objective function over smaller set compared to min𝐹⊂𝐸

|𝑉 (𝐹 )|−𝑐(𝐹 )
|𝐹 | .

Therefore, inequality follows immediately.

Establishing min𝑆⊂𝑉
|𝑆|−1
|𝐸(𝑆)| ≤ min𝐹⊂𝐸

|𝑉 (𝐹 )|−𝑐(𝐹 )
|𝐹 | : Let𝐹 ⋆ ⊂ 𝐸 be a minimizer of min𝐹⊂𝐸

|𝑉 (𝐹 )|−𝑐(𝐹 )
|𝐹 | .

Let 𝐻 = (𝑉 (𝐹 ⋆), 𝐹 ⋆). By optimality, all connected components of 𝐻 must be vertex-
induced subgraphs of 𝐺. This is because, if not then it is possible to add edges to 𝐻

without changing the number of vertices or number of connected components in it, which
would contradict optimality. In other words, there exists disjoint subsets 𝑆𝑖, 1 ≤ 𝑖 ≤ 𝑐(𝐻)

of 𝑉 (𝐹 ⋆) with 𝑉 (𝐹 ⋆) = ∪𝑐(𝐻)
𝑖=1 𝑆𝑖 and 𝐹 ⋆ = ∪𝑐(𝐻)

𝑖=1 𝐸(𝑆𝑖). If 𝑐(𝐻) = 1, then the inequal-
ity follows immediately. If 𝑐(𝐻) ≥ 2, denote 𝐻 ∖ 𝐻1 the graph obtained by removing
𝐻1 = (𝑆1, 𝐸(𝑆1)) from 𝐻 . Note that 𝑐(𝐻 ∖ 𝐻1) = 𝑐(𝐻) − 1 and that 𝑐(𝐻1) = 1. By
Lemma A.3.1, ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ R4

+ : min(𝑎
𝑏
, 𝑐
𝑑
) ≤ 𝑎+𝑐

𝑏+𝑑
. Therefore,

min

(︂
|𝑉 (𝐻1)| − 𝑐(𝐻1)

|𝐸(𝐻1)|
,
|𝑉 (𝐻 ∖𝐻1)| − 𝑐(𝐻 ∖𝐻1)

|𝐸(𝐻 ∖𝐻1)|

)︂
≤ |𝑉 (𝐻)| − 𝑐(𝐻)

|𝐸(𝐻)|
. (A.14)

If 𝐻1 achieves the minimum on the left hand side, then it concludes the proof. If 𝐻 ∖
𝐻1 achieves the minimum simply iterate the above argument till we are left with single
connected component and that would conclude the proof.
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Figure A-1: An example of an optimal weight assignment for the problem Dual on nine
different graphs. The solution was found by the interior point method using a linear pro-
gramming solver. Note that for most graphs, the solution reached is already constant on its
support. On graphs 𝐺2 and 𝐺4, note that evening out the weights would not increase the
weight of the maximum spanning tree.
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Lemma A.3.1. For any 𝑎, 𝑏, 𝑐, 𝑑 ∈ R+,

min(
𝑎

𝑏
,
𝑐

𝑑
) ≤ 𝑎+ 𝑐

𝑏+ 𝑑
. (A.15)

Proof. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ R+. Without loss of generality assume that Then the following
sequence of statements hold leading to the proof of the claim:

𝑎𝑑 ≤ 𝑏𝑐 or 𝑏𝑐 ≤ 𝑎𝑑 (A.16)

min(𝑎𝑑(𝑏+ 𝑑), 𝑐𝑏(𝑏+ 𝑑)) ≤ (𝑎+ 𝑐)𝑏𝑑 (A.17)

min(
𝑎

𝑏
,
𝑐

𝑑
) ≤ 𝑎+ 𝑐

𝑏+ 𝑑
. (A.18)

A.4 Proofs of Lemmas 2.4.3 and 2.4.4

Proof of Lemma 2.4.3. Assume 𝐺 has maximum average degree bounded by 𝑑, where by
definition

𝑑 = max
𝑆⊂𝑉

2|𝐸(𝑆)|
|𝑆|

. (A.19)

Therefore, for any 𝑆 ⊂ 𝑉 , |𝐸(𝑆)| ≤ 𝑑
2
|𝑆|. And there can be at most

(︀|𝑆|
2

)︀
edges in a graph

over vertices 𝑆, and hence |𝐸(𝑆)| ≤ |𝑆|(|𝑆|−1)
2

. Therefore, we obtain

|𝑆| − 1

|𝐸(𝑆)|
≥ 2

𝑑

(︀
1− 1

|𝑆|
)︀
= 𝐿1(|𝑆|), (A.20)

|𝑆| − 1

|𝐸(𝑆)|
≥ 2

|𝑆|
= 𝐿2(|𝑆|). (A.21)

Therefore

|𝑆| − 1

|𝐸(𝑆)|
≥ min

𝑥∈R+

{max(𝐿1(𝑥), 𝐿2(𝑥))}. (A.22)

Note that𝐿1 is increasing and bounded whereas𝐿2 is decreasing. Therefore, max(𝐿1(𝑥), 𝐿2(𝑥))

with 𝑥 ∈ R reaches its minimum for 𝑥 such that 𝐿1(𝑥) = 𝐿2(𝑥) which leads to minima at
𝑥 = 𝑑+ 1. Therefore, we conclude that for all 𝑆 ⊂ 𝑉 ,

|𝑆| − 1

|𝐸(𝑆)|
≥ 2

𝑑+ 1
. (A.23)

Proof of Lemma 2.4.4. Let 𝐺 has girth 𝑔 > 3. Therefore, all subgraphs of 𝐺 have girth at
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least 𝑔. The generalised Moore bound (obtained by [49]) then gives ∀𝑆 ⊂ 𝑉 :

|𝑆| ≥ 1 + 𝑑𝑆

𝑔−3
2∑︁

𝑖=0

(𝑑𝑆 − 1)𝑖 if g is odd, (A.24)

|𝑆| ≥ 2

𝑔−2
2∑︁

𝑖=0

(𝑑𝑆 − 1)𝑖, if g is even (A.25)

with 𝑑𝑆 = 2|𝐸(𝑆)|
|𝑆| . We will only keep a weaker version of this bound that does not depend

on the parity of 𝑔. Specifically, for all 𝑆 ⊂ 𝑉 :

|𝑆| ≥
(︀
2
|𝐸(𝑆)|
|𝑆|

− 1
)︀ 𝑔−3

2 . (A.26)

Therefore, |𝐸(𝑆)| ≤ 1
2
(|𝑆|

2
𝑔−3

+1 + |𝑆|) for all 𝑆 ⊂ 𝑉 . Subsequently, we have

|𝑆| − 1

|𝐸(𝑆)|
≥ 2

1− 1
|𝑆|

1 + |𝑆|
2

𝑔−3

≥ 2
1− 1

|𝑆|

1 +𝑁
2

𝑔−3

(A.27)

This bound is clearly increasing with |𝑆|. Also note that if |𝑆| ≤ 𝑔 − 1, the subgraph
(𝑆,𝐸(𝑆)) can have no cycle and therefore |𝑆|−1

|𝐸(𝑆)| = 1. The worse case is therefore attained
for |𝑆| = 𝑔 where we have:

|𝑆| − 1

|𝐸(𝑆)|
≥ 2

1 +𝑁
2

𝑔−3

(︀
1− 1

𝑔

)︀
. (A.28)

A.5 Proof of Lemma 2.5.1

Proof. We shall use Hoeffding’s inequality: for any bounded random variable 𝑎 ≤ 𝑋 ≤ 𝑏,
the deviation of its 𝑛-empirical average 𝑋𝑛 computed from in dependant samples is such
that for any 𝑡 > 0,

P(|E(𝑋)−𝑋𝑛| ≥ 𝑡) ≤ 2 exp
(︁ −2𝑛𝑡2

(𝑏− 𝑎)2

)︁
. (A.29)

Another version of the equation when E(𝑋) > 0 is as follows, for any 𝜖 > 0

P
(︂
1− 𝜖 ≤ 𝑋𝑛

E(𝑋)
≤ 1 + 𝜖

)︂
≥ 1− 2 exp

(︁−2𝑛𝜖2E(𝑋)2

(𝑏− 𝑎)2

)︁
. (A.30)

An immediate consequence is that û𝑛 is a good approximation for u. For any 𝑒 ∈ 𝐸,

P
(︂
1− 𝜖 ≤ �̂�𝑛𝑒

𝑢𝑒
≤ 1 + 𝜖

)︂
≥ 1− 2 exp

(︀
−2𝑛𝜖2𝑢2𝑒

)︀
, (A.31)

49



fctherefore by union bound,

P
(︂
∀𝑒 ∈ 𝐸 : 1− 𝜖 ≤ �̂�𝑛𝑒

𝑢𝑒
≤ 1 + 𝜖

)︂
≥ 1− 2|𝐸| exp

(︀
−2𝑛𝜖2𝜅u

)︀
. (A.32)

Another consequence is that 𝐿û𝑛 is a good approximation for 𝐿u. Indeed, considering the
random variable Φ(ΠT(𝜃)) of mean𝐿u(𝜃) and of empirical average𝐿û𝑛(𝜃) = 1

𝑛

∑︀𝑛
𝑖=1 Φ(Π

T𝑖(𝜃))

and noting that this variable is bounded as follows 0 ≤ Φ(ΠT(𝜃)) (≤ Φ(𝜃)) ≤ 1
𝜅u
𝐿u(𝜃),

we have

P
(︀
1− 𝜖 ≤ 𝐿û𝑛(𝜃)

𝐿u(𝜃)
≤ 1 + 𝜖

)︀
≥ 1− 2 exp

(︀
−2𝑛𝜖2𝜅2u

)︀
. (A.33)

Regarding𝑈û𝑛(𝜃), the discussion requires an additional argument because 1
𝑛

∑︀𝑛
𝑖=1 Φ(Π

T𝑖

û𝑛(𝜃))

is not a sum of independent random variables. Instead, let us focus on the close quantity,
1
𝑛

∑︀𝑛
𝑖=1 Φ(Π

T𝑖
u (𝜃)) for which we have 0 ≤ Φ(ΠT

u(𝜃))
(︁
≤ 1

𝜅u
Φ(𝜃)

)︁
≤ 1

𝜅u
𝑈u(𝜃) and there-

fore,

P
(︀
1− 𝜖 ≤

1
𝑛

∑︀𝑛
𝑖=1 Φ(Π

T𝑖
u (𝜃))

𝑈u(𝜃)
≤ 1 + 𝜖

)︀
≥ 1− 2 exp

(︀
−2𝑛𝜖2𝜅2u

)︀
. (A.34)

Fortunately, if (A.32) is satisfied this quantity turns out to be a good approximation of
𝑈û𝑛(𝜃). Indeed, assuming that ∀𝑒 ∈ 𝐸 : 1 − 𝜖 ≤ �̂�𝑛

𝑒

𝑢𝑒
≤ 1 + 𝜖 we have that for all

𝑇 ∈ 𝒯 (𝐺),
(1− 𝜖)Π𝑇

u(𝜃) ⪯ Π𝑇
û𝑛(𝜃) ⪯ (1 + 𝜖)Π𝑇

u(𝜃) (A.35)

therefore by (monotonicity) and (sub-linearity),

(1− 𝜖)Φ(Π𝑇
u(𝜃)) ≤ Φ(Π𝑇

û𝑛(𝜃)) ≤ (1 + 𝜖)Φ(Π𝑇
u(𝜃)), (A.36)

which shows,

(1− 𝜖) ≤ 𝑈û𝑛(𝜃)
1
𝑛

∑︀𝑛
𝑖=1Φ(Π

T𝑖
u (𝜃))

≤ (1 + 𝜖). (A.37)

Therefore by union bound,

P
(︂
(1− 𝜖)2 ≤ 𝑈û𝑛(𝜃)

𝑈u(𝜃)
≤ (1 + 𝜖)2

)︂
≥ 1− (2|𝐸|+ 2) exp

(︀
−2𝑛𝜅2u𝜖

2
)︀
. (A.38)

By putting together (A.33) and (A.38), we obtain

P

(︃
(1− 𝜖)

3
2 ≤

̂︀Φû𝑛(𝜃)

Φu(𝜃)
≤ (1 + 𝜖)

3
2

)︃
≥ 1− (2|𝐸|+ 4) exp

(︀
−2𝑛𝜅2u𝜖

2
)︀
, (A.39)
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and by arguments of Lemma 2.3.1, we can conclude that

P

(︃
√
𝜅u(1− 𝜖)

3
2 ≤

̂︀Φû𝑛(𝜃)

Φ(𝜃)
≤ (1 + 𝜖)

3
2

√
𝜅u

)︃
≥ 1− (2|𝐸|+4) exp

(︁
−2𝑛

√
𝜅u

2
𝜖2
)︁
, (A.40)

This completes the proof of Lemma 2.5.1.

A.6 Proof of Lemma 2.5.2

Bounded degree graph 𝐺. First assume that 𝐺 has maximum degree 𝑑. Consider any edge
𝑒 = (𝑠, 𝑡) ∈ 𝐸. Denote 𝒩 (𝑠),𝒩 (𝑡) ⊂ 𝑉 the neighbours of 𝑠 and 𝑡. Consider current
𝜄 : 𝑉 × 𝑉 → R which is a solution of optimization problem corresponding to effective
resistance as defined in (2.39). By definition, we have that the effective resistance 𝑢𝑒 for
𝑒 ∈ 𝐸 is given by

𝑢𝑒 =
∑︁

(𝑢,𝑣)∈𝐸

𝜄(𝑢, 𝑣)2

≥ 𝜄(𝑠, 𝑡)2 +
∑︁

𝑢∈𝒩 (𝑠)∖{𝑡}

𝜄(𝑠, 𝑢)2 +
∑︁

𝑢∈𝒩 (𝑡)∖{𝑠}

𝜄(𝑢, 𝑡)2. (A.41)

By constraints of the optimization problem, the sum of currents entering source 𝑠 and
leaving sink 𝑡 is equal to 1 (whereas it is null for isolated vertices). Therefore, focusing on
𝑠, we have

∑︀
𝑢∈𝒩 (𝑠)∖{𝑡} |𝜄(𝑠, 𝑢)| ≥ 1 − |𝜄(𝑠, 𝑡)|. By applying Cauchy Schwarz inequality,

we have that (︀ ∑︁
𝑢∈𝒩 (𝑠)∖{𝑡}

𝜄(𝑠, 𝑢)2
)︀
×
(︀ ∑︁
𝑢∈𝒩 (𝑠)∖{𝑡}

12
)︀
≥ (1− |𝜄(𝑠, 𝑡)|)2. (A.42)

Recall that 𝐺 has maximum vertex degree 𝑑 and therefore |𝒩 (𝑠)∖{𝑡}| ≤ 𝑑−1. Therefore,

∑︁
𝑢∈𝒩 (𝑠)∖{𝑡}

𝜄(𝑠, 𝑢)2 ≥ (1− |𝜄(𝑠, 𝑡)|)2

𝑑− 1
. (A.43)

Because the same holds for the term
∑︀

𝑢∈𝒩 (𝑡)∖(𝑠) 𝜄(𝑢, 𝑡)
2, we obtain from (A.41) that

𝑢𝑒 ≥ 𝜄(𝑠, 𝑡)2 + (1− |𝜄(𝑠, 𝑡)|)2 2

𝑑− 1
. (A.44)

This expression holds for all possible values of 𝜄(𝑠, 𝑡). We note that for any given 𝜆 ∈ R+,

inf
𝑥∈R

𝑥2 + (1− 𝑥)2𝜆 ≥ 𝜆

1 + 𝜆
. (A.45)
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Therefore, we conclude that for graph 𝐺 with bounded degree 𝑑,

𝑢𝑒 ≥
2

𝑑+ 1
. (A.46)

Graph 𝐺 with girth 𝑔. We now assume that 𝐺 has girth 𝑔. As before, let 𝑒 = (𝑠, 𝑡) ∈ 𝐸.
Denote 𝐺 ∖ {𝑒} = (𝑉,𝐸 ∖ {𝑒}) the graph obtained by removing edge 𝑒 from 𝐺. For
0 ≤ 𝑘 ≤ 𝑔 − 2, we define

𝐸𝑘 = {(𝑢, 𝑣) ∈ 𝐸 : 𝑑𝐺∖{𝑒}(𝑠, 𝑢) = 𝑘, 𝑑𝐺∖{𝑒}(𝑠, 𝑣) = 𝑘 + 1}, (A.47)

where 𝑑𝐺∖{𝑒}(𝑠, 𝑢) denotes the shortest path distance between vertices 𝑠, 𝑢 in graph 𝐺 ex-
cluding edge 𝑒. That is, 𝐸𝑘 is the set of edges connecting vertices at distance 𝑘 from 𝑠 in
𝐺 ∖ {𝑒} to vertices at distance 𝑘+1 from 𝑠 in 𝐺 ∖ {𝑒}. Since 𝑘 ≤ 𝑔− 2, all 𝐸𝑘 are disjoint
and hence current 𝜄 satisfies

𝑢𝑒 ≥ 𝜄(𝑠, 𝑡)2 +

𝑔−2∑︁
𝑘=0

∑︁
(𝑢,𝑣)∈𝐸𝑘

𝜄(𝑢, 𝑣)2. (A.48)

For 0 ≤ 𝑘 ≤ 𝑔 − 2, note that 𝐸𝑘 ∪ {𝑒} defines a cut of 𝐺. Therefore by Kirchoff’s law∑︀
(𝑢,𝑣)∈𝐸𝑘

|𝜄(𝑢, 𝑣)| ≥ 1− |𝜄(𝑠, 𝑡)|. Using Cauchy-Schwartz inequality, we obtain:

(︀ ∑︁
(𝑢,𝑣)∈𝐸𝑘

𝜄(𝑢, 𝑣)2
)︀
×
(︀ ∑︁
(𝑢,𝑣)∈𝐸𝑘

12
)︀
≥ (1− 𝜄(𝑠, 𝑡))2. (A.49)

By summing-up all inequalities, we obtain

(︀ 𝑔−2∑︁
𝑘=0

∑︁
(𝑢,𝑣)∈𝐸𝑘

𝜄(𝑢, 𝑣)2) ≥ (1− |𝜄(𝑠, 𝑡)|)2
(︀ 𝑔−2∑︁

𝑘=0

1

|𝐸𝑘|
)︀
. (A.50)

Note that if a sequence (𝑚𝑘) ≥ 0 respects
∑︀𝑙

𝑘=1𝑚𝑘 ≤ |𝐸| then,
∑︀𝑙

𝑘=1
1
𝑚𝑘

≥ 𝑙2

|𝐸| . There-

fore, because all 𝐸𝑘 are disjoint,
∑︀𝑔−2

𝑘=0
1

|𝐸𝑘|
≥ (𝑔−1)2

|𝐸| . Inserting this in (A.48), we obtain

𝑢𝑒 ≥ 𝜄(𝑠, 𝑡)2 + (1− 𝜄(𝑠, 𝑡))2
(𝑔 − 1)2

|𝐸|
. (A.51)

Using (A.45), we obtain

𝑢𝑒 ≥
1

1 + |𝐸|
(𝑔−1)2

. (A.52)

This completes the proof of Lemma 2.5.2.
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A.7 Proof of Theorem 2.6.1

Proof. The proof follows by establishing that 𝜅𝑘𝜌 as defined in (2.41) for 𝜌 ∈ 𝒫(Part𝑘(𝐺))

is such that

𝜅𝑘𝜌 ≥ 1− 𝜖, (A.53)

if 𝜌 is (𝜖, 𝑘) partition. Indeed, by definition of (𝜖, 𝑘) partition, we have that for any 𝑒 ∈ 𝐸,

𝜌𝑒 = EH∼𝜌[1(𝑒 ∈ H)] ≥ 1− 𝜖. (A.54)

Therefore,

𝜅𝑘𝜌 = min
𝑒∈𝐸

𝜌𝑒 ≥ 1− 𝜖. (A.55)

Subsequently, using arguments identical to that for proof of Lemma 2.3.1, it follows that̂︀Φ𝜌(𝜃) is 1/
√︁
𝜅𝑘𝜌 approximation. That is,

√
1− 𝜖 ≤ Φ(𝜃)̂︀Φ𝜌(𝜃)

≤ 1√
1− 𝜖

. (A.56)

This completes the proof of Theorem 2.6.1.
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